Step-by-step explanation:
n/6+2=0
n/6+2/1=0
find the LCM=6
n+12/6=0
cross multiply
n+12=0
n=-12
Answer:
Distance between the points A and B is 15.52 units.
Step-by-step explanation:
It has been given in the question that an airplane flies along a straight line from City A to City B.
Map has been laid out in the (x, y) coordinate plane and the coordinates of these cities are A(20, 14) and B(5, 10).
Distance between two points A'(x, y) and B'(x', y') is represented by the formula,
d = 
So we plug in the values of (x, y) and (x', y') in the formula,
d = 
d = 
d = 
d = 15.52
Therefore, distance between the points A and B is 15.52 units.
The area bounded by the 2 parabolas is A(θ) = 1/2∫(r₂²- r₁²).dθ between limits θ = a,b...
<span>the limits are solution to 3cosθ = 1+cosθ the points of intersection of curves. </span>
<span>2cosθ = 1 => θ = ±π/3 </span>
<span>A(θ) = 1/2∫(r₂²- r₁²).dθ = 1/2∫(3cosθ)² - (1+cosθ)².dθ </span>
<span>= 1/2∫(3cosθ)².dθ - 1/2∫(1+cosθ)².dθ </span>
<span>= 9/8[2θ + sin(2θ)] - 1/8[6θ + 8sinθ +sin(2θ)] .. </span>
<span>.............where I have used ∫(cosθ)².dθ=1/4[2θ + sin(2θ)] </span>
<span>= 3θ/2 +sin(2θ) - sin(θ) </span>
<span>Area = A(π/3) - A(-π/3) </span>
<span>= 3π/6 + sin(2π/3) -sin(π/3) - (-3π/6) - sin(-2π/3) + sin(-π/3) </span>
<span>= π.</span>

d - distance
v - speed
t - time
Car A:

Car B:
15 mph faster than car A

Both cars traveled equal distances:

Car B traveled at the speed of 60 mph.