1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Colt1911 [192]
3 years ago
9

Which symbol goes in the box to make this number sentence true? 6x _x + x + +x+x

Mathematics
1 answer:
steposvetlana [31]3 years ago
8 0

Answer:

The right answer is = so C ig

You might be interested in
X2+11x+30 what does x2 mean
Alexxandr [17]

x^2 in the function that you typed is x * x ( x multiplied by x). It represents a second degree because there are only 2 "x"s multiplied together. If there were 3 "x"s multiplied together, we would have x^3. Since the highest exponent in this function is 2 (in x^2), we call this function a 2nd degree polynomial.

4 0
3 years ago
Solve for W in A = 2(L + W)
Roman55 [17]

\Large\begin{aligned}\\\\&A = 2(L + W)\\&A = 2L+2W\\&2W=A-2L\\&W=\dfrac{A-2L}{2}\end

4 0
2 years ago
I don't know how do do it can u help me ​
Blizzard [7]

Answer:

The second regon

Step-by-step explanation:

4 0
3 years ago
Me need help on math:(
sladkih [1.3K]

Answer:

-6 is the answer

Step-by-step explanation:

3 0
3 years ago
Use the rules of exponents to simplify the expressions. Match the expression with its equivalent value.
Lelechka [254]

Answer:

1) \frac{(-2)^{-5}}{(-2)^{-10}}=-32

2) 2^{-1}.2^{-4} = \frac{1}{32}

3) (-\frac{1}{2} )^3.(-\frac{1}{2} )^2=-\frac{1}{32}

4) \frac{2}{2^{-4}} = 32

Step-by-step explanation:

1) \frac{(-2)^{-5}}{(-2)^{-10}}

Solving using exponent rule: a^{-m}=\frac{1}{a^m}

\frac{(-2)^{-5}}{(-2)^{-10}}\\=(-2)^{-5+10}\\=(-2)^{5}\\=-32

So, \frac{(-2)^{-5}}{(-2)^{-10}}=-32

2) 2^{-1}.2^{-4}

Using the exponent rule: a^m.a^n=a^{m+n}

We have:

2^{-1}.2^{-4}\\=2^{-1-4}\\=2^{-5}

We also know that: a^{-m}=\frac{1}{a^m}

Using this rule:

2^{-5}\\=\frac{1}{2^5}\\=\frac{1}{32}

So, 2^{-1}.2^{-4} = \frac{1}{32}

3) (-\frac{1}{2} )^3.(-\frac{1}{2} )^2

Solving:

(-\frac{1}{2} )^3.(-\frac{1}{2} )^2\\=(-\frac{1}{8} ).(\frac{1}{4} )\\=-\frac{1}{32}

So, (-\frac{1}{2} )^3.(-\frac{1}{2} )^2=-\frac{1}{32}

4) \frac{2}{2^{-4}}

We know that: a^{-m}=\frac{1}{a^m}

\frac{2}{2^{-4}}\\=2\times 2^4\\=2(16)\\=32

So, \frac{2}{2^{-4}} = 32

3 0
3 years ago
Other questions:
  • Solve the inequality for V.<br><br> -8.3 _&gt;_ V - 1.9
    5·1 answer
  • What is the equation of this graphed line?
    14·1 answer
  • Which relationships describes angles 1 and 2?
    14·2 answers
  • Use the number 751,486
    8·1 answer
  • Use the equation y = 4x to answer the questions.
    15·2 answers
  • What is 2+4/5x15-190?
    13·2 answers
  • For kite JKLM, find m∠JML.
    13·1 answer
  • Without graphing or solving either system of equations explain how you know what the solution to the system is.
    5·1 answer
  • 3x10+4x1+ 5x1/10 +5x1/100+6x1/1000 in standard form
    9·1 answer
  • 1. Write an algebraic description for
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!