Let's use Gaussian elimination. Consider the augmented matrix,
![\left[\begin{array}{ccc|ccc}1 & -1 & -1 & 1 & 0 & 0\\-1 & 2 & 3 & 0 & 1 & 0\\1 & 1 & 4 & 0 & 0 & 1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%20%26%20-1%20%26%20-1%20%26%201%20%26%200%20%26%200%5C%5C-1%20%26%202%20%26%203%20%26%200%20%26%201%20%26%200%5C%5C1%20%26%201%20%26%204%20%26%200%20%26%200%20%26%201%5Cend%7Barray%7D%5Cright%5D)
• Add row 1 to row 2, and add -1 (row 1) to row 3:
![\left[\begin{array}{ccc|ccc}1 & -1 & -1 & 1 & 0 & 0\\0 & 1 & 2 & 1 & 1 & 0\\0 & 2 & 5 & -1 & 0 & 1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%20%26%20-1%20%26%20-1%20%26%201%20%26%200%20%26%200%5C%5C0%20%26%201%20%26%202%20%26%201%20%26%201%20%26%200%5C%5C0%20%26%202%20%26%205%20%26%20-1%20%26%200%20%26%201%5Cend%7Barray%7D%5Cright%5D)
• Add -2 (row 2) to row 3:
![\left[\begin{array}{ccc|ccc}1 & -1 & -1 & 1 & 0 & 0\\0 & 1 & 2 & 1 & 1 & 0\\0 & 0 & 1 & -3 & -2 & 1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%20%26%20-1%20%26%20-1%20%26%201%20%26%200%20%26%200%5C%5C0%20%26%201%20%26%202%20%26%201%20%26%201%20%26%200%5C%5C0%20%26%200%20%26%201%20%26%20-3%20%26%20-2%20%26%201%5Cend%7Barray%7D%5Cright%5D)
• Add -2 (row 3) to row 2:
![\left[\begin{array}{ccc|ccc}1 & -1 & -1 & 1 & 0 & 0\\0 & 1 & 0 & 7 & 5 & -2\\0 & 0 & 1 & -3 & -2 & 1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%20%26%20-1%20%26%20-1%20%26%201%20%26%200%20%26%200%5C%5C0%20%26%201%20%26%200%20%26%207%20%26%205%20%26%20-2%5C%5C0%20%26%200%20%26%201%20%26%20-3%20%26%20-2%20%26%201%5Cend%7Barray%7D%5Cright%5D)
• Add row 2 and row 3 to row 1:
![\left[\begin{array}{ccc|ccc}1 & 0 & 0 & 5 & 3 & -1\\0 & 1 & 0 & 7 & 5 & -2\\0 & 0 & 1 & -3 & -2 & 1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%20%26%200%20%26%200%20%26%205%20%26%203%20%26%20-1%5C%5C0%20%26%201%20%26%200%20%26%207%20%26%205%20%26%20-2%5C%5C0%20%26%200%20%26%201%20%26%20-3%20%26%20-2%20%26%201%5Cend%7Barray%7D%5Cright%5D)
So the inverse is

Answer :
<h3>
<u>
=1048576 ways </u>
a student can answer the questions on the test if the student answers every question.</h3>
Step-by-step explanation:
Given that a multiple-choice test contains 10 questions and there are 4 possible answers for each question.
∴ Answers=4 options for each question.
<h3>
To find how many ways a student can answer the given questions on the test if the student answers every question :</h3>
Solving this by product rule
Product rule :
<u>If one event can occur in m ways and a second event occur in n ways, the number of ways of two events can occur in sequence is then m.n</u>
From the given the event of choosing the answer of each question having 4 options is given by
The 1st event of picking the answer of the 1st question=4 ,
2nd event of picking the answer of the 2nd question=4 ,
3rd event of picking the answer of the 3rd question=4
,....,
10th event of picking the answer of the 10th question=4.
It can be written as by using the product rule



<h3>∴ there are 1048576 ways a student can answer the questions on the test if the student answers every question.</h3>
Answer:
the last choice
Step-by-step explanation:
two functions are said to be inverse when they are symmetric about the line y=x
Answer:
one solution
Step-by-step explanation:
3(x-2) =22 -x
Distribute
3x - 6 = 22-x
Add x to each side
3x+x-6 = 22-x+x
4x+6 = 22
Subtract 6 from each side
4x+6-6 = 22-6
4x= 16
Divide by 4
4x/4 = 16/4
x=4
There is one solution
Answer:
I guess (c) is your answer. thanks!!