For a function to be continuous at an x-value, say -17, you need to make sure two things line up:
The limit from the left equals the limit from the right.

This limit equals the functions value.

The left hand limit involves the first piece, f(x) = 20x + 1:
![\begin{aligned} \lim_{x \to -17^{-}} f(x) &= \lim_{x \to -17^{-}} (20x+1)\\[0.5em]&= 20(-17)+1\\[0.5em]&= -339\endaligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%20%5Clim_%7Bx%20%5Cto%20-17%5E%7B-%7D%7D%20f%28x%29%20%26%3D%20%20%5Clim_%7Bx%20%5Cto%20-17%5E%7B-%7D%7D%20%2820x%2B1%29%5C%5C%5B0.5em%5D%26%3D%20%20%2020%28-17%29%2B1%5C%5C%5B0.5em%5D%26%3D%20%20%20-339%5Cendaligned%7D)
The right hand limit invovles the second piece, f(x) = -10x^2:
![\begin{aligned} \lim_{x \to -17^{+}} f(x) &= \lim_{x \to -17^{+}} (-10x^2)\\[0.5em]&= -10\cdot (-17)^2\\[0.5em]&= -2890\endaligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%20%5Clim_%7Bx%20%5Cto%20-17%5E%7B%2B%7D%7D%20f%28x%29%20%26%3D%20%20%5Clim_%7Bx%20%5Cto%20-17%5E%7B%2B%7D%7D%20%28-10x%5E2%29%5C%5C%5B0.5em%5D%26%3D%20%20%20-10%5Ccdot%20%28-17%29%5E2%5C%5C%5B0.5em%5D%26%3D%20%20%20-2890%5Cendaligned%7D)
Since the two one-sided limits don't match, the function is not continuous at x=-17.
What is it you need help with?
Answer:
P=x+18
Step-by-step explanation:
a=8
b=x
c=10
P=8+x+10
Answer:
0.4 pounds
Step-by-step explanation:
10 pounds / 25 square feet
to get the number of pounds per feet
10 / 25 = 0.4
so, your answer is 0.4 pounds per 1 square foot
9514 1404 393
Answer:
4) 6x
5) 2x +3
Step-by-step explanation:
We can work both these problems at once by finding an applicable rule.

where O(h²) is the series of terms involving h² and higher powers. When divided by h, each term has h as a multiplier, so the series sums to zero when h approaches zero. Of course, if n < 2, there are no O(h²) terms in the expansion, so that can be ignored.
This can be referred to as the <em>power rule</em>.
Note that for the quadratic f(x) = ax^2 +bx +c, the limit of the sum is the sum of the limits, so this applies to the terms individually:
lim[h→0](f(x+h)-f(x))/h = 2ax +b
__
4. The gradient of 3x^2 is 3(2)x^(2-1) = 6x.
5. The gradient of x^2 +3x +1 is 2x +3.
__
If you need to "show work" for these problems individually, use the appropriate values for 'a' and 'n' in the above derivation of the power rule.