4x+499=660
X=40.25
X equeals the amount for each game.
Answer:
- Maria–Ava: 15.7 feet
- Lucas–Maria: 10.1 feet
- angle at Maria: 50°
Step-by-step explanation:
The cosine and tangent functions are useful here. The relevant relations are ...
Cos = Adjacent/Hypotenuse
Tan = Opposite/Adjacent
__
The distance from Maria to Ava (ma) is the hypotenuse of the triangle, so we have ...
cos(40°) = 12/ma
ma = 12/cos(40°) ≈ 12/0.76604 ≈ 15.7 . . . feet
__
The distance from Lucas to Maria (ml) is the side opposite the given angle, so we have ...
tan(40°) = ml/12
ml = 12·tan(40°) ≈ 12·0.83910 ≈ 10.1 . . . feet
__
The angle formed at Maria's position is the complement of the other acute angle in the right triangle:
M = 90° -40° = 50°
In summary, ...
- Maria–Ava: 15.7 feet
- Lucas–Maria: 10.1 feet
- angle at Maria: 50°
Answer:
Her speed on the summit was 35 mph.
Step-by-step explanation:
Her speed on the summit was "x" mph while her speed while climbing was "x - 10" mph. The distance she rode uphill was 55 miles and on the summit it was 28 miles. The total time she explored the mountain was 3 hours. Therefore:
time uphill = distance uphill / speed uphill = 55 / (x - 10)
time summit = distance summit / speed summit = 28 / x
total time = time uphill + time summit
3 = [55 / (x - 10)] + 28 / x
3 = [55*x + 28*(x - 10)]/[x*(x - 10)]
3*x*(x - 10) = 55*x + 28*x - 280
3x² - 30*x = 83*x - 280
3x² - 113*x + 280 = 0
x1 = {-(-113) + sqrt[(-113)² - 4*(3)*(280)]}/(2*3) = 35 mph
x2 = {-(-113) - sqrt[(-113)² - 4*(3)*(280)]}/(2*3) = 2.67 mph
Since her speed on the uphill couldn't be negative the speed on the summit can only be 35 mph.
Answer:
Volume is 1,692.46
Step-by-step explanation:
pi(r^2)(h), 3.14(49)(11)
Answer:
See attached picture.
Step-by-step explanation:
Find critical points to graph the rational function.
When x = 0, then y = 5 / 2 = 2.5.
When y=0, then 0=-3x+5 and x= 5/3 =1.6667.
Plot the points (0,2.5) and (1.6667, 0). Then draw the "L" shape graphs of the rational function.