What are the side lengths of the trapezoid lol
This gives you the answer, look at it tells you how to solve this and get your answer
Answer: The width is: " 10 in. " .
________________________________________________
Explanation:
________________________________________________
Consider a "rectangular prism".
________________________________________________
The formula for the Volume of a rectangular prism:
________________________________________________
V = L * w * h ;
_________________________________________________
in which:
V = volume = 120 in.³ ;
L = length = 8 in.
w = width = ??
h = height = 1.5 in.
____________________________________________
We want to solve for "w" (width) ;
____________________________________________
Given the formula:
____________________________________________
V = L * w * h ;
____________________________________________
Rewrite the formula; by dividing EACH SIDE of the equation by
"(L * h)" ; to isolate "w" on one side of the equation;
and to solve for "w" ;
_____________________________________________
→ V / (L * h) = ( L * w * h) / (L * h) ;
to get:
_________________________________
→ V / (L * h) = w ;
↔ w = V / (L * h) ;
_________________________________
Plug in our given values for "V", "L"; and "h"; to solve for "w" ;
____________________________________________________
→ w = (120 in.³) / (8 in. * 1.5 in.) ;
→ w = (120 in.³) / (12 in.²) ;
→ w = (120/12) in. = 10 in.
____________________________________________________
Step-by-step explanation:
f(3)=?
f(x)=2x+5
put x=3,
f(3)=2(3)+5=6+5=11
------------
g(2)=?
g(x)=x^2-3
put x=2,
g(2)=2^2-3=4-3=1
-----------------
g(f(-1))=?
g(x)=x^2-3
and f(-1)=2(-1)+5= -2+5=3
so g(f(-1))=3^2-3=9-3=6
----------------
f(g(-1))=?
f(x)=2x+5
g(x)=g(-1)=(-1)^2-3=1-3= -2
f(g(-1))=2(-2)+5= -4+5=1
----------------
g(f(x))=?
g(x)= x^2-3
put x=f(x),
g(f(x))=f(x)^2-3=(2x+5)^2-3=4x+25+20x-3=24x+25
Answer:
║

[Corresponding Sides of similar triangles are proportional.]
