Answer and Step-by-step explanation:
A Diophantine equation is simply an equation that relates whole numbers.
There are various types of Diophantine equations, but probably the most basic is the linear version: ax + by = c.
Different methods also abound for solving these types of equations:
- Coordinate geometry
- Modular arithmetic
- Induction
Hope this helps!
Hi there! You have to remember these 6 basic Trigonometric Ratios which are:
- sine (sin) = opposite/hypotenuse
- cosine (cos) = adjacent/hypotenuse
- tangent (tan) = opposite/adjacent
- cosecant (cosec/csc) = hypotenuse/opposite
- secant (sec) = hypotenuse/adjacent
- cotangent (cot) = adjacent/opposite
- cosecant is the reciprocal of sine
- secant is the reciprocal of cosine
- cotangent is the reciprocal of tangent
Back to the question. Assuming that the question asks you to find the cosine, sine, cosecant and secant of angle theta.
What we have now are:
- Trigonometric Ratio
- Adjacent = 12
- Opposite = 10
Looks like we are missing the hypotenuse. Do you remember the Pythagorean Theorem? Recall it!
Define that c-term is the hypotenuse. a-term and b-term can be defined as adjacent or opposite
Since we know the value of adjacent and opposite, we can use the formula to find the hypotenuse.
- 10²+12² = c²
- 100+144 = c²
- 244 = c²
Thus, the hypotenuse is:

Now that we know all lengths of the triangle, we can find the ratio. Recall Trigonometric Ratio above! Therefore, the answers are:
- cosine (cosθ) = adjacent/hypotenuse = 12/(2√61) = 6/√61 = <u>(6√61) / 61</u>
- sine (sinθ) = opposite/hypotenuse = 10/(2√61) = 5/√61 = <u>(5√61) / 61</u>
- cosecant (cscθ) is reciprocal of sine (sinθ). Hence, cscθ = (2√61/10) = <u>√61/5</u>
- secant (secθ) is reciprocal of cosine (cosθ). Hence, secθ = (2√61)/12 = <u>√</u><u>61</u><u>/</u><u>6</u>
Questions can be asked through comment.
Furthermore, we can use Trigonometric Identity to find the hypotenuse instead of Pythagorean Theorem.
Hope this helps, and Happy Learning! :)
Answer:
We are 95% confident that the true proportion of TV audience is between 65.15% and 65.85%
Step-by-step explanation:
-From the given information,
.
-We calculate the confidence interval using this value at 95% confidence level:
![CI=\hat p\pm z \sqrt{\frac{\hat p(1-\hat p)}{n}}\\\\\\=0.65\pm 1.96\times \sqrt{\frac{0.65\times 0.35}{12000}}\\\\\\=0.65\pm 0.0085\\\\\\=[0.6415,0.6585]](https://tex.z-dn.net/?f=CI%3D%5Chat%20p%5Cpm%20z%20%5Csqrt%7B%5Cfrac%7B%5Chat%20p%281-%5Chat%20p%29%7D%7Bn%7D%7D%5C%5C%5C%5C%5C%5C%3D0.65%5Cpm%201.96%5Ctimes%20%5Csqrt%7B%5Cfrac%7B0.65%5Ctimes%200.35%7D%7B12000%7D%7D%5C%5C%5C%5C%5C%5C%3D0.65%5Cpm%200.0085%5C%5C%5C%5C%5C%5C%3D%5B0.6415%2C0.6585%5D)
So, the 95% confidence interval is (0.6515,0.6585).
Hence, we are 95% confident that the true proportion of TV audience is between 65.15% and 65.85%.
<h3>Answer: </h3>
2250 dives
<h3>Explanation</h3>
If each kid dives off the diving board 9 times, for 250 kids, you need to resolve a simple operation:
