Answer:
Are also equal
Step-by-step explanation:
Say triangle A has the angles 30 and 60. triangle b also has those angles. Total angle of any triangle is 180 so 180-60-30 = 90 for triangle A and it is also the same for triangle b. Thus 90 = 90 angles are the same.
The new coordinates of A'B'C' creates a triangle that is larger than ABC.
<h3>Transformation</h3>
Transformation is the movement of a point from its initial location to a new location. Types of transformation are <em>translation, reflection, rotation and dilation.</em>
If a point A(x, y) is dilated by a scale factor k, the new point is at A'(kx, ky).
Given that:
- Triangle ABC has the following coordinates: A(4 , 5), B(5 , 3), and C(2 , 3)
If it is dilated by a scale factor of 3, the new point is at:
- A'(12, 15), B'(15, 9) and C'(6, 9)
Therefore the new coordinates of A'B'C' creates a triangle that is larger than ABC.
Find out more on dilation at: brainly.com/question/10253650
When you convert 11pi over 12 in to degrees, you get 165°
Drawing this square and then drawing in the four radii from the center of the cirble to each of the vertices of the square results in the construction of four triangular areas whose hypotenuse is 3 sqrt(2). Draw this to verify this statement. Note that the height of each such triangular area is (3 sqrt(2))/2.
So now we have the base and height of one of the triangular sections.
The area of a triangle is A = (1/2) (base) (height). Subst. the values discussed above, A = (1/2) (3 sqrt(2) ) (3/2) sqrt(2). Show that this boils down to A = 9/2.
You could also use the fact that the area of a square is (length of one side)^2, and then take (1/4) of this area to obtain the area of ONE triangular section. Doing the problem this way, we get (1/4) (3 sqrt(2) )^2. Thus,
A = (1/4) (9 * 2) = (9/2). Same answer as before.
En algunos bancos, cuentas de ahorro o incluso en prestamos y empeños podemos observar que se cobra un interés mensual. Esto no significa que todos los intereses deban ser así.
El periodo, es el tiempo en el que se aplica el interés, este puede ser anual, mensual, semanal, o incluso por día.