Answer:
The distance of the object placed on the principal axis from the concave mirror.
Explanation:
In a concave mirror, the nature of the image formed formed by the object placed in front of the mirror depends on the position of the object placed in from of the mirror. It all depends on the distance between the mirror and the object placed on the principal axis.
The closer the object is to the lens, the more larger or magnified the image formed will be. For example an object placed between the focal point and the pole of a concave produces a much larger image than an object placed beyond the centre of curvature of such mirror.
ANS : 313℃
You need to use K in this.
To convert ℃ to Kelvin (K), add 273.15 to ℃.
<h2>Given that,</h2>
Mass of two bumper cars, m₁ = m₂ = 125 kg
Initial speed of car X is, u₁ = 10 m/s
Initial speed of car Z is, u₂ = -12 m/s
Final speed of car Z, v₂ = 10 m/s
We need to find the final speed of car X after the collision. Let v₁ is its final speed. Using the conservation of momentum to find it as follows :

v₁ is the final speed of car X.

So, car X will move with a velocity of -12 m/s.