A parallel line has the same slope as the original line. So in this case the slope of the line is also 3/4. Now how do we know if it intersects the point? We need to adjust the y intercept.
Currently, we know the equation of the line is y= 3/4 x + b, where b is the thing we are looking for. We also have a point, which supplies the x and y. Plug that in and solve for b
-2 = (3/4)*(12) + b
You'll get b= -11
So the equation of the parallel line intersecting the point given is y= 3/4x -11.
I am assuming that the slope is 3/4 based on the way you formatted the original equation, but it's the same steps if the slope is different.
.08 x .04 is the right answer
Answer:
The probability of both points falling in the same row or column is 7/19, or approximately 37%
Step-by-step explanation:
The easiest way to solve this is to think of it rephrased as "what is the probability that your second point will be in the same row or column as your first point". With that frame of reference, you can simply consider how many other points are left that do or do not fall in line with the selected one.
After selecting one, there are 19 points left.
The row that the first one falls in will have 3 remaining empty points.
The column will have 4 remaining empty points.
Add those up and you have 7 possible points that meet the conditions being checked.
So the probability of both points falling in the same row or column is 7/19, or approximately 37%
Answer:
13.5 and 13.5
Step-by-step explanation: