The answer is b wind energy
Answer:
a froglet sadly ;-;
Explanation:
➤ Stage 1. Egg –
➤ Stage 2. Tadpole –
➤ Stage 3. Froglet –
➤ Stage 4. Adult Frog there hope this helps
The phrase "of Arizona" is B. an adjective phrase, because it acts as if it were a simple adjective and describes the subject.
Answer:
The cells in a population die at a constant rate
Explanation:
Microbial death is the loss of the ability of microbes to reproduce and survive in an environment. When a given microbial population is given a treatment, the microbial cells die at a constant rate. Microbial death rate is not dependent on the specie and nor on the antimicrobial agent.
Therefore, the microbial cells in a population does not die at once but die at a constant logarithmic rate; the cells decreases exponentially as nutrients decreases and waste product increases.
For example, if 500,000 microbes are treated or in a nutrient depleted environment and 50,000 microbes is left after 1 minute, by the next minute under the same condition 5,000 microbial cells will be left and this pattern will continue, this explains exponential decrease
Answer:
The cell interior would experience higher than normal Na+ concentrations and lower than normal K+ concentrations.
Explanation:
The Na/⁺K⁺ pump is an ATPase pump which is responsible for maintaining low Na⁺ and high K⁺ concentrations within the cytoplasm while maintaining high Na⁺ and low K⁺ concentrations in the extracellular fluid.
Since these two ions are moved against their concentration gradient, ATP hydrolysis is required to provide the energy for this process. This is done by moving in two K⁺ ions inside while moving three Na⁺ ions outside the cell for every molecule of ATP hydrolysed to ADP and Pi.
If a competitive non-hydrolyzable analog of ATP is applied on the cytoplasmic side of a plasma membrane that contained a large concentration of the Na/⁺K⁺ pump, it will act by inhibiting the action of the Na/⁺K⁺ pump. This will result in an accumulation of Na⁺ ions inside the cell and lower than normal K⁺ ions concentration.