From stock A
The price increases as time passes till they both became constant eventually the price decreases as time passes
From stock B
The price is low in the beginning however as time passes it increases till it became constant
Answer:
r/4 units
Step-by-step explanation:
each side of a square is of the same length, perimeter is the sum of the 4 length, length of a side of square = r/4 units
5 * 10 raise to power of - 4
Answer:
a. ![\dfrac{dx}{dt} = 6\frac{2}{3} \cdot c](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdt%7D%20%3D%206%5Cfrac%7B2%7D%7B3%7D%20%5Ccdot%20c)
b. ![x(t) = 6\frac{2}{3} \cdot c \cdot t](https://tex.z-dn.net/?f=x%28t%29%20%3D%206%5Cfrac%7B2%7D%7B3%7D%20%5Ccdot%20c%20%5Ccdot%20t)
c. ![c = \dfrac{3}{8} \ g/L](https://tex.z-dn.net/?f=c%20%20%3D%20%5Cdfrac%7B3%7D%7B8%7D%20%20%5C%20g%2FL)
Step-by-step explanation:
a. The volume of water initially in the fish tank = 15 liters
The volume of brine added per minute = 5 liters per minute
The rate at which the mixture is drained = 5 liters per minute
The amount of salt in the fish tank after t minutes = x
Where the volume of water with x grams of salt = 15 liters
dx = (5·c - 5·c/3)×dt = 20/3·c = ![6\frac{2}{3} \cdot c \cdot dt](https://tex.z-dn.net/?f=6%5Cfrac%7B2%7D%7B3%7D%20%5Ccdot%20c%20%5Ccdot%20dt)
![\dfrac{dx}{dt} = 6\frac{2}{3} \cdot c](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdt%7D%20%3D%206%5Cfrac%7B2%7D%7B3%7D%20%5Ccdot%20c)
b. The amount of salt, x after t minutes is given by the relation
![\dfrac{dx}{dt} = 6\frac{2}{3} \cdot c](https://tex.z-dn.net/?f=%5Cdfrac%7Bdx%7D%7Bdt%7D%20%3D%206%5Cfrac%7B2%7D%7B3%7D%20%5Ccdot%20c)
![dx = 6\frac{2}{3} \cdot c \cdot dt](https://tex.z-dn.net/?f=dx%20%3D%206%5Cfrac%7B2%7D%7B3%7D%20%5Ccdot%20c%20%5Ccdot%20dt)
![x(t) = \int\limits \, dx = \int\limits \left ( 6\frac{2}{3} \cdot c \right) \cdot dt](https://tex.z-dn.net/?f=x%28t%29%20%3D%20%5Cint%5Climits%20%5C%2C%20dx%20%20%3D%20%5Cint%5Climits%20%5Cleft%20%28%206%5Cfrac%7B2%7D%7B3%7D%20%5Ccdot%20c%20%5Cright%29%20%5Ccdot%20dt)
![x(t) = 6\frac{2}{3} \cdot c \cdot t](https://tex.z-dn.net/?f=x%28t%29%20%3D%206%5Cfrac%7B2%7D%7B3%7D%20%5Ccdot%20c%20%5Ccdot%20t)
c. Given that in 10 minutes, the amount of salt in the tank = 25 grams, and the volume is 15 liters, we have;
![x(10) = 25 \ grams(15 \ in \ liters) = 6\frac{2}{3} \times c \times 10](https://tex.z-dn.net/?f=x%2810%29%20%3D%2025%20%5C%20grams%2815%20%5C%20in%20%5C%20liters%29%20%3D%206%5Cfrac%7B2%7D%7B3%7D%20%5Ctimes%20c%20%5Ctimes%2010)
![6\frac{2}{3} \times c =\dfrac{25 \ grams }{10}](https://tex.z-dn.net/?f=6%5Cfrac%7B2%7D%7B3%7D%20%5Ctimes%20c%20%20%3D%5Cdfrac%7B25%20%5C%20grams%20%7D%7B10%7D)
![c =\dfrac{25 \ g/L }{10 \times 6\frac{2}{3} } = \dfrac{25 \ g/L}{10 \times \dfrac{20}{3} } =\dfrac{3}{200} \times 25 \ g/L= \dfrac{75}{200} \ g/L = \dfrac{3}{8} \ g/L](https://tex.z-dn.net/?f=c%20%20%3D%5Cdfrac%7B25%20%5C%20g%2FL%20%7D%7B10%20%5Ctimes%206%5Cfrac%7B2%7D%7B3%7D%20%7D%20%20%3D%20%5Cdfrac%7B25%20%5C%20g%2FL%7D%7B10%20%5Ctimes%20%5Cdfrac%7B20%7D%7B3%7D%20%7D%20%3D%5Cdfrac%7B3%7D%7B200%7D%20%5Ctimes%2025%20%5C%20g%2FL%3D%20%5Cdfrac%7B75%7D%7B200%7D%20%20%5C%20g%2FL%20%3D%20%5Cdfrac%7B3%7D%7B8%7D%20%20%5C%20g%2FL)
![c = \dfrac{3}{8} \ g/L](https://tex.z-dn.net/?f=c%20%20%3D%20%5Cdfrac%7B3%7D%7B8%7D%20%20%5C%20g%2FL)
Well there is no background info, it would be impossible to guess