Answer:
I dont understand the equation
Let's approach this problem by slowly eliminating choices.
First consider the keyword
"at most" and
"no more than". This means that the inequality should be less than or equal to the constant value stated. This will automatically eliminate two choices with the greater than symbol favoring the variables - choices A and D.
Next we associate the right constants to the right coefficients of variables. The two kinds of weight the truck transports are 30 and 65 lbs, and we know that this should not exceed 3,800 lbs. This is therefore our first inequality. The other inequality is for the volume. The combinations of the two volumes 4 and 9 cubic feet should not exceed 400 cubic feet when transported.
If you try to construct the inequality and miss it among the choices, don't worry! Let's try doing some simplifications first and see if it matches either B or C.
After simplification you can get

from dividing the equation by 5 and

for leaving it as it is.
Looking carefully, we can see that this is equivalent to option B.
ANSWER: B.
Answer
Find out the value of x .
To proof
SAS congurence property
In this property two sides and one angle of the two triangles are equal.
in the Δ ADC and ΔBDC
(1) CD = CD (common side of both the triangle)
(2) ∠CDA = ∠ CDB = 90 °
( ∠CDA +∠ CDB = 180 ° (Linear pair)
as given in the diagram
∠CDA = 90°
∠ CDB = 180 ° - 90°
∠ CDB = 90°)
(3) AD = DB (as shown in the diagram)
Δ ADC ≅ ΔBDC
by using the SAS congurence property .
AC = BC
(Corresponding sides of the congurent triangle)
As given
the length of AC is 2x and the length of BC is 3x - 5 .
2x = 3x - 5
3x -2x =5
x = 5
The value of x is 5 .
Hence proved
Answer:
m∠ABE = 27°
Step-by-step explanation:
* Lets look to the figure to solve the problem
- AC is a line
- Ray BF intersects the line AC at B
- Ray BF ⊥ line AC
∴ ∠ABF and ∠CBF are right angles
∴ m∠ABF = m∠CBF = 90°
- Rays BE and BD intersect the line AC at B
∵ m∠ABE = m∠DBE ⇒ have same symbol on the figure
∴ BE is the bisector of angle ABD
∵ m∠EBF = 117°
∵ m∠EBF = m∠ABE + m∠ABF
∵ m∠ABF = 90°
∴ 117° = m∠ABE + 90°
- Subtract 90 from both sides
∴ m∠ABE = 27°