70 = 7 x 2 x 5
60 = 2² x 3 x 5
50 = 2 x 5²
LCM = 2 x 3 x 5 x 7 = 210
Answer: LCM = 210
<span>12.3
Volume function: v(x) = ((18-x)(x-1)^2)/(4pi)
Since the perimeter of the piece of sheet metal is 36, the height of the tube created will be 36/2 - x = 18-x.
The volume of the tube will be the area of the cross section multiplied by the height. The area of the cross section will be pi r^2 and r will be (x-1)/(2pi). So the volume of the tube is
v(x) = (18-x)pi((x-1)/(2pi))^2
v(x) = (18-x)pi((x-1)^2/(4pi^2))
v(x) = ((18-x)(x-1)^2)/(4pi)
The maximum volume will happen when the value of the first derivative is zero. So calculate the first derivative:
v'(x) = (x-1)(3x - 37) / (4pi)
Convert to quadratic equation.
(3x^2 - 40x + 37)/(4pi) = 0
3/(4pi)x^2 - (10/pi)x + 37/(4pi) = 0
Now calculate the roots using the quadratic formula with a = 3/(4pi), b = -10/pi, and c = 37/(4pi)
The roots occur at x = 1 and x = 12 1/3. There are the points where the slope of the volume equation is zero. The root of 1 happens just as the volume of the tube is 0. So the root of 12 1/3 is the value you want where the volume of the tube is maximized. So the answer to the nearest tenth is 12.3</span>
X+10=105
105-10=95=x
x = 95
Answer:

Step-by-step explanation:
Hello,
Let's follow the instructions !
Step 1
g(x)=k*f(x)=k*|x|
We know that the point (2,6) is on the graph so 6=g(2) meaning:
6=k*|2|=k*2
*** divide by 2 both sides ***
k = 6/2 = 3
Step 2
g(x)=3*|x|
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Answer:

Step-by-step explanation:
The equation
represents the discriminant of a quadratic. It is the part taken from under the radical in the quadratic formula.
For any quadratic:
- If the discriminant is positive, or greater than 0, the quadratic has two solutions
- If the discriminant is equal to 0, the quadratic has one distinct real solution (the solution is repeated).
- If the discriminant is negative, or less than 0, the quadratic has zero solutions
In the graph, we see that the equation intersects the x-axis at two distinct points. Therefore, the quadratic has two solutions and the discriminant must be positive. Thus, we have
.