Answer:
The maximum height of the golf ball h(t) = 156.25m
The maximum height of the golf ball at t = 3.125 seconds
Step-by-step explanation:
<u><em>Step(i):</em></u>-
Given
h(t)=-16t²+100t ...(i)
Differentiating equation (i) with respective to 't'

-32t + 100 =0
⇒ -32 t = -100
t = 3.125 > 0
<u><em>Step(ii):-</em></u>
Given h(t) = -16t²+100t = 0
t ( -16 t + 100 ) =0
t =0 and -16t = -100
t =0 and t = 6.25
<u><em>Step(iii)</em></u>:-
h(t) = -16t²+100t ...(i)
put t=0 in equation (i)
h(0) = 0
put t = 3.125 in equation (i)
h(t) = -16(3.125)²+100(3.125)
h (t) = 156.25
Put t = 6.25
h(t) = -16(6.25)²+100(6.25)
= 0
The maximum value h(t) = 156.25 at 3.125
<u><em>final answer</em></u>:-
The maximum height of the golf ball h(t) = 156.25m
The maximum height of the golf ball at t = 3.125 seconds