The exact value of the y in the similar right triangle is 2.2360679775 units
<h3 /><h3>How to find the side of a triangle?</h3>
The triangles are similar.
Similar triangles have corresponding sides of equal ratio.
The corresponding angles of similar triangle are equal.
Therefore, using similar ratio,
y / 5 = 1 / y
cross multiply
y × y = 5 × 1
y² = 5
square root both sides
y = √5
Therefore,
y = 2.2360679775 units
learn more on triangles here: brainly.com/question/2773823
#SPJ1
The graph is labeled on the side(Followers) and on the bottom(Days). With the table, you count the lines to find the point you need to be on. For example, the 1st day Trey got 120 followers. You would find #1 on the bottom part of the graph, and then proceed to find 120 on the side of the graph. Trace towards the middle, and where they meet is where you would place the point.
Answer:
76 degrees
Step-by-step explanation:
The total of the three angles in a triangle should equal 180 degrees. So to find the third angle, subtract the two given angles from 180
180 - 87 = 93
93 - 17 = 76
The third angle is 76 degrees because then all angles will add up to 180
It is a negative 2 so the answer is (7,-2)
Your answers are
A = 35.7°
B = 67.6°
C = 76.7°
cosine law
![a^2 = b^2 + c^2 -2bc \cos A \\ -2bc \cos A = a^2 - b^2 - c^2 \\ \\ \cos A = \dfrac{a^2 - b^2 - c^2}{-2bc} \\ \\ A = \cos^{-1}\left[ \dfrac{a^2 - b^2 - c^2}{-2bc} \right] \\ \\ A = \cos^{-1}\left[ \dfrac{12^2 - 19^2 - 20^2}{-2(19)(20)} \right] \\ \\ A = 35.723697](https://tex.z-dn.net/?f=a%5E2%20%3D%20b%5E2%20%2B%20c%5E2%20-2bc%20%5Ccos%20A%20%5C%5C%0A-2bc%20%5Ccos%20A%20%3D%20a%5E2%20-%20b%5E2%20-%20c%5E2%20%5C%5C%20%5C%5C%0A%5Ccos%20A%20%3D%20%5Cdfrac%7Ba%5E2%20-%20b%5E2%20-%20c%5E2%7D%7B-2bc%7D%20%5C%5C%20%5C%5C%0AA%20%3D%20%5Ccos%5E%7B-1%7D%5Cleft%5B%20%5Cdfrac%7Ba%5E2%20-%20b%5E2%20-%20c%5E2%7D%7B-2bc%7D%20%5Cright%5D%20%5C%5C%20%5C%5C%0AA%20%3D%20%5Ccos%5E%7B-1%7D%5Cleft%5B%20%5Cdfrac%7B12%5E2%20-%2019%5E2%20-%2020%5E2%7D%7B-2%2819%29%2820%29%7D%20%5Cright%5D%20%20%5C%5C%20%5C%5C%0AA%20%3D%2035.723697)
A = 35.723697
sine law for the rest of the angles
![\displaystyle \frac{\sin B}{b} = \frac{\sin A}{a} \\ \\ \sin B = \frac{b \sin A}{a} \\ \\ B = \sin^{-1} \left[ \frac{b \sin A}{a} \right] \\ \\ B = \sin^{-1} \left[ \frac{19 \sin 35.723697 }{12} \right] \\ \\ B \approx 67.58886795](https://tex.z-dn.net/?f=%5Cdisplaystyle%0A%5Cfrac%7B%5Csin%20B%7D%7Bb%7D%20%3D%20%5Cfrac%7B%5Csin%20A%7D%7Ba%7D%20%5C%5C%20%5C%5C%0A%5Csin%20B%20%3D%20%5Cfrac%7Bb%20%5Csin%20A%7D%7Ba%7D%20%5C%5C%20%5C%5C%0AB%20%3D%20%5Csin%5E%7B-1%7D%20%5Cleft%5B%20%5Cfrac%7Bb%20%5Csin%20A%7D%7Ba%7D%20%20%5Cright%5D%20%5C%5C%20%5C%5C%0AB%20%3D%20%5Csin%5E%7B-1%7D%20%5Cleft%5B%20%5Cfrac%7B19%20%5Csin%2035.723697%20%7D%7B12%7D%20%20%5Cright%5D%20%20%5C%5C%20%5C%5C%0AB%20%5Capprox%2067.58886795)
B = 67.58886795
All angles in triangle sum to 180 so find C with that
A + B + C = 180
C = 180 - A - B
C = 180 - 35.723697 - 67.58886795
C = 76.7°