Ten-thousand AFAFANDIUAHDIUAHIUDHAIDh (had to write 20 more "letters")
Answer:
578 + 48 square inches
Step-by-step explanation:
The computation of the area of the purple band is as follows:
Area of the green square = side^2 = x^ square inches
And, the area of the orange square = side^2
The side would be = = 12 + 12 +x = 24 + x
And, now the area would be = (x + 24)^2
Now the area of the orange band is
= Area of the orange square area of the green square
= (x + 24)^2 - x^2
= x^2 + 24^2 + 48 - x^2
= 578 + 48 square inches
Answer:
Niether of them are correct
Step-by-step explanation:
If you actually put into your calculator 2^28, it equals 268,435,456. This is because you're not just squaring 28, you are multiplying 2 by 2-- 38 times. This will quickly add up, even if you start out with 2 it will create a very large number.
Answer:
15) K'(t) = 5[5^(t)•In 5] - 2[3^(t)•In 3]
19) P'(w) = 2e^(w) - (1/5)[2^(w)•In 2]
20) Q'(w) = -6w^(-3) - (2/5)w^(-7/5) - ¼w^(-¾)
Step-by-step explanation:
We are to find the derivative of the questions pointed out.
15) K(t) = 5(5^(t)) - 2(3^(t))
Using implicit differentiation, we have;
K'(t) = 5[5^(t)•In 5] - 2[3^(t)•In 3]
19) P(w) = 2e^(w) - (2^(w))/5
P'(w) = 2e^(w) - (1/5)[2^(w)•In 2]
20) Q(W) = 3w^(-2) + w^(-2/5) - w^(¼)
Q'(w) = -6w^(-2 - 1) + (-2/5)w^(-2/5 - 1) - ¼w^(¼ - 1)
Q'(w) = -6w^(-3) - (2/5)w^(-7/5) - ¼w^(-¾)