In an airplane equipped with fuel pumps, the auxiliary electric fuel pump is used in the event the engine-driven fuel pump fails.. hope this helped !
Answer:
elongation of the brass rod is 0.01956 mm
Explanation:
given data
length = 5 cm = 50 mm
diameter = 4.50 mm
Young's modulus = 98.0 GPa
load = 610 N
to find out
what will be the elongation of the brass rod in mm
solution
we know here change in length formula that is express as
δ =
................1
here δ is change in length and P is applied load and A id cross section area and E is Young's modulus and L is length
so all value in equation 1
δ =
δ =
δ = 0.01956 mm
so elongation of the brass rod is 0.01956 mm
Answer:
As the x-values go to negative infinity, the function’s values go to positive infinity.
Explanation:
if the ans choices are:
As the x-values go to negative infinity, the function’s values go to negative infinity.
As the x-values go to negative infinity, the function’s values go to positive infinity.
As the x-values go to positive infinity, the function’s values go to negative infinity.
As the x-values go to positive infinity, the function’s values go to zero.
the ans is the 2nd choice
Answer:
The second classmate is right.
Explanation:
The height of first summit provides the potential energy it will use to climb the following ones.
Ep = m * g * h
Where
m: mass
g: acceleration of gravity
h: height
When the train goes downwards the potential energy is converted into kinetic energy (manifested as speed) and when it climbs it consumes its kinetical energy. As long as no summit is taller than the first the train should have enough energy to climb them.
Also it must be noted that friction also consumes energy, and if the track is too lomg all the energy might be consumed by it.