Answer:
a) Ql=33120000 kJ
b) COP = 5.6
c) COPreversible= 29.3
Explanation:
a) of the attached figure we have:
HP is heat pump, W is the work supplied, Th is the higher temperature, Tl is the low temperature, Ql is heat supplied and Qh is the heat rejected. The worj is:
W=Qh-Ql
Ql=Qh-W
where W=2000 kWh
Qh=120000 kJ/h

b) The coefficient of performance is:

c) The coefficient of performance of a reversible heat pump is:

Th=20+273=293 K
Tl=10+273=283K
Replacing:

Answer:
Mechanical Efficiency = 83.51%
Explanation:
Given Data:
Pressure difference = ΔP=1.2 Psi
Flow rate = 
Power of Pump = 3 hp
Required:
Mechanical Efficiency
Solution:
We will first bring the change the units of given data into SI units.

Now we will find the change in energy.
Since it is mentioned in the statement that change in elevation (potential energy) and change in velocity (Kinetic Energy) are negligible.
Thus change in energy is

As we know that Mass = Volume x density
substituting the value
Energy = Volume * density x ΔP / density
Change in energy = Volumetric flow x ΔP
Change in energy = 0.226 x 8.274 = 1.869 KW
Now mechanical efficiency = change in energy / work done by shaft
Efficiency = 1.869 / 2.238
Efficiency = 0.8351 = 83.51%
Answer:
Both Technician A and B are correct
Explanation:
Due to a contamination of the clutch disc friction surface, the clutch chatters
The contamination that causes clutch chattering includes
1) Worn or broken motor mounts
2) Bell housing bolts becoming loose
3) Clutch link damage
4) Warped flywheel, due to overheating, the flywheel can become warped such that the non uniform surface interfaces the clutch resulting in clutch chattering
5) Engine or transmission oil contaminating the disc.