Given data:
•) applied voltage = 15 V
•). Resistance = 1000 ohm
Required:
•). The magnitude of current= ?
•••••••••••••SOLUTION•••••••••••••
We can find the relation ship between current, voltage and resistance with the help of Ohms law.
According to ohms law;
V= IR.
Rearranging the above equation;
I= V/ R
Putt the values in the above equation; we get
I= 15V/ 1000ohm
I = 0.015 A( ampere)
••••••••••••••• CONCLUSION•••••••
The value of the current would be 0.15 ampere when Resistance is equal to 1000 and that of Voltage is equal to 15 V.
Answer:
The rate of entropy change of the air is -0.10067kW/K
Explanation:
We'll assume the following
1. It is a steady-flow process;
2. The changes in the kinetic energy and the potential energy are negligible;
3. Lastly, the air is an ideal gas
Energy balance will be required to calculate heat loss;
mh1 + W = mh2 + Q where W = Q.
Also note that the rate of entropy change of the air is calculated by calculating the rate of heat transfer and temperature of the air, as follows;
Rate of Entropy Change = -Q/T
Where Q = 30Kw
T = Temperature of air = 25°C = 298K
Rate = -30/298
Rate = -0.100671140939597 KW/K
Rate = -0.10067kW/K
Hence, the rate of entropy change of the air is -0.10067kW/K
Answer:
A) Linear Equation -
Linear equation has only one independent variable and when the linear equation plotted on a graph it forms a straight line. It is made up of two expressions equal to each other in a equation. Linear equation graph fits the Y= mx+a ( m=slope).
B) Laplace's equation is linear as it is a second order partial differential equation. So if we put dependent variable in differential equation it always show result in linear.
Answer: B) Clutch
Explanation:
The Clutch operate by pressings the two frictional surface press together by transferring the spinning motion between the drive shaft and the crank shaft.
The main purpose of the friction clutch is that, it is used to connect the moving member with another moving member at different speeds. It is basically used to synchronize the speed into the power.