The solution to the composite function f(g(x)) is 9x² - 78x + 165.
<h3>
What is composite function?</h3>
A composite function is generally a function that is written inside another function.
Function composition is an operation that takes two functions f and g, and produces a function h = g ∘ f such that h(x) = g.
From the given composite function, the solution is determined as follows;
to solve for f(g(x)), we use the following methods.
f(x) = x² + 2x - 3, g(x) = 3x - 14
f(g(x)) = (3x - 14)² + 2(3x - 14) - 3
= 9x² - 84x + 196 + 6x - 28 - 3
= 9x² - 78x + 165
Thus, the solution to the composite function f(g(x)) is 9x² - 78x + 165.
Learn more about composite function here: brainly.com/question/10687170
#SPJ1
The complete question is below:
F(x) =x2+2x-3 g(x)=3x-14, find f(g(x))
Answer:
3x² + 3x - 36=
(3x+12)(x-3)
x² - 3x - 28=
(x+4)(x-7)
Step-by-step explanation:
For both equations use the method called the "Cross Method". It is useful for these type of factorisation questions called "Trinomials".
For more info on the cross method.
Here it is:
https://www.mathsteacher.com.au/year10/ch10_factorisation/05_cross_mult_method/cross.htm
Hope you enjoyed :D
=Y2-10Y
We move all terms to the left:
-(Y2-10Y)=0
We add all the numbers together, and all the variables
-(+Y^2-10Y)=0
We get rid of parentheses
-Y^2+10Y=0
We add all the numbers together, and all the variables
-1Y^2+10Y=0
a = -1; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·(-1)·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
Y1=−b−Δ√2aY2=−b+Δ√2a
Δ‾‾√=100‾‾‾‾√=10
Y1=−b−Δ√2a=−(10)−102∗−1=−20−2=+10
Y2=−b+Δ√2a=−(10)+102∗−1=0−2=0