Question:
Which of the following is a quadrantal angle?
a) π/2 b) π/3 c) 2π/3 D) 4π/5
Answer:

Step-by-step explanation:
Required
Which of a to d is a quadrantal angle
An angle is said to be quadrantal if and only if the angle has its terminal side on the x or y axis.
Such angles (in degrees) are: 90, 180, 270, etc.
So, we have:

[Convert to degrees]


Hence:
is a quadrantal angle
<em>The other options are not.</em>
When x = -2, g(-2) = 4
and
when x = -2, f(-) = 4
answer
f(-2) = g(-2)
7. -20
10 3
6 3
Subtract each remember 4-- -6= 10
I think 4 would be the ansswer actually
<u>Part A</u>
x² + 5x + 4 = 0
x = <u>-(5) +/- √((5)² - 4(1)(4))</u>
2(1)
x = <u>-5 +/- √(25 - 16)</u>
2
x = <u>-5 +/- √(9)</u>
2
x = <u>-5 +/- 3</u>
2
x = <u>-5 + 3</u> U x = <u>-5 - 3</u>
2 2
x = <u>-2</u> x = -<u>8</u>
2 2
x = -1 x = -4
<u>Part B</u>
4x² - 12x + 5 = 0
x = <u>-(-12) +/- √((-12)² - 4(4)(5))</u>
2(4)
x = <u>12 +/- √(144 - 80)</u>
8
x = <u>12 +/- √(64)</u>
8
x = <u>12 +/- 8</u>
8
x = <u>3 +/- 2</u>
2
x = <u>3 + 2</u> U x = <u>3 - 2</u>
2 2
x = <u>5</u> x = <u>1</u>
2 2
x = 2.5 x = 0.5
<u>Part C</u>
2x² - 10x + 3 = 0
x = <u>-(-10) +/- √((-10)² - 4(2)(3))</u>
2(2)
x = <u>10 +/- √(100 - 24)</u>
4
x = <u>10 +/- √(76)</u>
4
x = <u>10 +/- 2√(19)</u>
4
x = <u>5 +/- √(19)</u>
2
x = 2.5 <u>+</u> 0.5√(19)
x = 2.5 + 0.5√(19) U x = 2.5 - 0.5√(19)