Answer:
45 ways
Step-by-step explanation:
We are given;
there are 3 different math courses, 3 different science courses, and 5 different history courses.
Thus;
Number ways to take math course = 3
The number of ways to take science course = 3
The number of ways to take history course = 5
Now, if a student must take one of each course, the different ways it can be done is;
possible ways = 3 x 3 x 5 = 45 ways.
Thus, number of different ways in which a student must take one of each subject is 45 ways.
Answer:
are you on edge
Step-by-step explanation:
Answer:
C. The 6th term is positive/negative 80
Step-by-step explanation:
Given
Geometric Progression


Required

To get the 6th term of the progression, first we need to solve for the first term and the common ratio of the progression;
To solve the common ratio;
Divide the 7th term by the 5th term; This gives

Divide the numerator and the denominator of the fraction by 40
----- equation 1
Recall that the formula of a GP is

Where n is the nth term
So,


Substitute the above expression in equation 1
becomes


Square root both sides

r = ±
Next, is to solve for the first term;
Using 
By substituting 160 for T5 and ±
for r;
We get


Multiply through by 16



Now, we can easily solve for the 6th term
Recall that the formula of a GP is

Here, n = 6;



r = ±
So,
or 
or 
or 
±80
Hence, the 6th term is positive/negative 80
Answer: its 0 right or is it supposed to be a face or sumthin
Step-by-step explanation:
Answer: B) (96pi + 160) cm2
Step-by-step explanation: