-2z - xy = z + 7
You are solving for x. Note the equal sign. What you do to one side, you do to the other. Isolate the x.
First, add 2z to both sides
-2z (+2z) - xy = z + 7 (+2z)
Simplify. Combine like terms
-xy = z + 2z + 7
-xy = 3z + 7
Completely isolate the x. Divide -y from both sides
(-xy)/-y = (3z + 7)/-y
x = (3z + 7)/-y
Simplify
z = (3z + 7)/(-y) is your answer
hope this helps
1) When finding a median, order your numerical list from smallest to larger, as so: 2,2,3,4,5,6,8,9.
2) Then start eliminating numbers from each side of the order; (The bolded numbers will be removed.)
2,2,3,4,5,6,8,9
2,3,4,5,6,8,9
2,3,4,5,6,8
3,4,5,6,8
3,4,5,6
4,5,6
4,5
3) Since there is an even number of digits in your list, you will have to add the last two digits and then divide them by two. 4 and 5 are the last numbers standing, (4+5=9)(9/2=4.5) and therefore your answer, would be 4.5, or B.
Answer:

Step-by-step explanation:
![\ln \dfrac{4y^5}{x^2}\\\\=\ln(4y^5) - \ln(x^2)~~~~~~~~~~~;\left[ \log_b\left( \dfrac mn \right) = \log_b m - \llog_b n \right]\\\\=\ln 4 + \ln y^5 - 2\ln x~~~~~~~~~~~~;[\log_b m^n = n \log_b m ~\text{and}~\log_b(mn) = \log_b m + \log_b n ]\\\\=\ln 4 + 5 \ln y -2 \ln x\\\\=\ln 4 -2 \ln x +5 \ln y](https://tex.z-dn.net/?f=%5Cln%20%5Cdfrac%7B4y%5E5%7D%7Bx%5E2%7D%5C%5C%5C%5C%3D%5Cln%284y%5E5%29%20-%20%5Cln%28x%5E2%29~~~~~~~~~~~%3B%5Cleft%5B%20%5Clog_b%5Cleft%28%20%5Cdfrac%20mn%20%5Cright%29%20%20%3D%20%5Clog_b%20m%20-%20%5Cllog_b%20n%20%5Cright%5D%5C%5C%5C%5C%3D%5Cln%204%20%2B%20%5Cln%20y%5E5%20-%202%5Cln%20x~~~~~~~~~~~~%3B%5B%5Clog_b%20m%5En%20%3D%20n%20%5Clog_b%20m%20~%5Ctext%7Band%7D~%5Clog_b%28mn%29%20%3D%20%5Clog_b%20m%20%2B%20%5Clog_b%20n%20%5D%5C%5C%5C%5C%3D%5Cln%204%20%2B%205%20%5Cln%20y%20-2%20%5Cln%20x%5C%5C%5C%5C%3D%5Cln%204%20-2%20%5Cln%20x%20%2B5%20%5Cln%20y)