Answer:
B. 
Explanation:
Assuming we are dealing with a perfect gas, we should use the perfect gas equation:

With T the temperature, V the volume, P the pressure, R the perfect gas constant and n the number of mol, we are going to use the subscripts i for the initial state when the gas has 20 cubic inches of volume and absolute pressure of 5 psi, and final state when the gas reaches 10 psi, so we have two equations:
(1)
(2)
Assuming the temperature and the number of moles remain constant (number of moles remain constant if we don't have a leak of gas) we should equate equations (1) and (2) because
,
and R is an universal constant:
, solving for 


Answer:
Left to right and top to bottom
Explanation:
On the periodic table, the properties repeat from left to right and from top to bottom.
Periodic properties have a pattern from the top to the bottom or down a group or family.
Also, across the period from left to right, they also show a repeating pattern.
- Certain properties increase from left to right and decreases from top to bottom. E.g. electronegativity.
- Also, some properties decreases from left to right and increases from top to bottom e.g. atomic radius.
Answer:
你想知道你认为什么不是开放互联网不是开放互联网不是开放互联网不是开放互联网不是开放互联网
Answer:
The height of the building is approximately 156.58 m
Explanation:
The mass of the ball dropped from rest from the building top = 0.660 kg
The time in which the ball falls, t = 5.65 seconds
The height, h, of the building is given from the following equation of motion;
h = u·t + ¹/₂·g·t²
Where;
u = The initial velocity of the ball = 0 m/s
g = The acceleration due to gravity = 9.81 m/s²
Plugging in the values, we have;
h = 0 × 5.65 + ¹/₂ × 9.81 × 5.65² ≈ 156.58 m
The height of the building, h ≈ 156.58 m.