Answer:
0.1606 = 16.06% probability that the number of births in any given minute is exactly five.
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

In which
x is the number of sucesses
e = 2.71828 is the Euler number
is the mean in the given interval.
In this question:
We only have the mean during an interval, and this is why we use the Poisson distribution.
The mean number of births per minute in a given country in a recent year was about 6.
This means that 
Find the probability that the number of births in any given minute is exactly five.
This is P(X = 5). So

0.1606 = 16.06% probability that the number of births in any given minute is exactly five.
Answer:
Step-by-step explanation:
This is a reflection over x-axis.
Answer: Given.
Step-by-step explanation: The last sentence of the directions, Begin. . .
ends with: Construct line RS a bisector of ∠PQR
Answer:
0 ≤y ≤ 60
Step-by-step explanation:
The range is values the y can take
y goes from 0 to 60
10 ≤y ≤ 60
Answer:
36.88% probability that her pulse rate is between 69 beats per minute and 81 beats per minute.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

Find the probability that her pulse rate is between 69 beats per minute and 81 beats per minute.
This is the pvalue of Z when X = 81 subtracted by the pvalue of Z when X = 69.
X = 81



has a pvalue of 0.6844
X = 69



has a pvalue of 0.3156
0.6844 - 0.3156 = 0.3688
36.88% probability that her pulse rate is between 69 beats per minute and 81 beats per minute.