For a function to have a derivative in a point has to be continuous at the point, that is, it has to be defined at that point, other wise the derivative would be meaningless.
The domain is the corresponding value of x
so, as shown at the graph :
The line starts at x =
The two pairs of polar coordinates for the given point (3, -3) with 0° ≤ θ < 360° are (3√2, 135°) and (3√2, 315°).
<h3>What is a polar coordinate?</h3>
A polar coordinate is a two-dimensional coordinate system, wherein each point on a plane is typically determined by a distance (r) from the pole (origin) and an angle (θ) from a reference direction (polar axis).
Next, we would determine the distance (r) and angle (θ) as follows:
r = √(3² + (-3)²)
r = √(9 + 9)
r = 3√2.
θ = tan⁻¹(-3/3)
θ = tan⁻¹(-1)
θ = 3π and 7π/4 (second and fourth quadrants).
Converting to degrees, we have:
θ = 135° and 315°.
Read more on polar coordinates here: brainly.com/question/3875211
#SPJ1
Complete Question:
Determine two pairs of polar coordinates for the point (3, -3) with 0° ≤ θ < 360°
It’s like the answer you have to figure out ? Lol idk