Answer:
can't see anything sorry can't help
Answer:
350 F to 100 F it take approx 87.33 min
Explanation:
given data
oven = 350◦F
cooling rack = 70◦F
time = 30 min
cake = 200◦F
solution
we apply here Newtons law of cooling
= -k(T-Ta)
=
(T(t) -Ta)
=
= -k(T-Ta)
-ky
= -ky
T(t) -Ta = (To -Ta)
T(t) = Ta+ (To -Ta)
put her value for time 30 min and T(t) = 200◦F and To =350◦F and Ta = 70◦F
so here
200 = 70 + ( 350 - 70 ) 
k = 0.025575
so here for T(t) = 100F
100 = 70 + ( 350 - 70 ) 
time = 87.33 min
so here 350 F to 100 F it take approx 87.33 min
Answer: 0.01 m
Explanation: The formulae for capillarity rise or fall is given below as
h = (2T×cosθ)/rpg
Where θ = angle mercury made with glass = 50°
T = surface tension = 0.51 N/m
g = acceleration due gravity = 9.8 m/s²
r = radius of tube = 0.5mm = 0.0005m
p = density of mercury.
h = height of rise or fall
From the question, specific gravity of density = 13.3
Where specific gravity = density of mercury/ density of water, where density of water = 1000 kg/m³
Hence density of mercury = 13.3×1000 = 13,300 kg/m³.
By substituting parameters, we have that
h = 2×0.51×cos 50/0.0005×9.8×13,300
h = 0.6556/65.17
h = 0.01 m
Answer:
Position-Time graphs display the motion of a object by showing the changes of velocity with respect to time.
The motion of a car on a position-time graph that is represented with a horizontal line indicates that the car has stopped moving.
A straight line with a positive slope indicates that the car is moving at a constant velocity, and thus the slope is constant. On the other hand, a curve with a changing slope, shows that the velocity is changing.