Answer: 56.44°
Explanation:
<u>Given:</u>
- Let u represent the current speed of the plane, <u>1.2 Mach</u>
<em>Converting to SI Units (m/s):</em>
= (1.2 mach)(340 ms^-1 / 1 Mach)
u = 408 m/s
- Speed of sound in air, v = 340 m/s
<u>Find:</u>
- Angle the wave front of the shock wave relative to the plane's direction of motion, θ
We have, sinθ = speed of sound / speed of object
sinθ = v / u
θ = sin^-1 (v / u)
= sin^-1 (340 / 408)
θ = 56.44°
Answer:
U = 80.91 J
Explanation:
In order to calculate the electric potential energy between the three charges you use the following formula:
(1)
k: Coulomb's constant = 8.98*10^9Nm^2/C^2
q1: q2 charge
r1,2: distance between charges 1 and 2.
For the three charges you have:
(2)
You use the fact that q1=q2=q3=q and that the distance between charges are equal. Then, in the equation (2) you have:
q = 1.45μC = 1.45*10^-6C
r = 0.700mm = 0.700*10^-3m

The electric potential energy between the three charges is 80.91 J
longitude and latitude<span />
12. The answer would be C. 1.50 s. This is because if you divide 60 by 40, you will get 1.5.
13. For this one I'm not sure, but what I can tell you is that the heavier something is the faster it will sink, the lighter it is, it will float.