cos (2x) = cos x
2 cos^2 x -1 = cos x using the double angle formula
2 cos ^2 x -cos x -1 =0
factor
(2 cos x+1) ( cos x -1) = 0
using the zero product property
2 cos x+1 =0 cos x -1 =0
2 cos x = -1 cos x =1
cos x = -1/2 cos x=1
taking the arccos of each side
arccos cos x = arccos (-1/2) arccos cos x = arccos 1
x = 120 degrees x=-120 degrees x=0
remember you get 2 values ( 2nd and 3rd quadrant)
these are the principal values
now we need to add 360
x = 120+ 360n x=-120+ 360n x = 0 + 360n where n is an integer
Answer:
Step-by-step explanation:
I see you're in college math, so we'll solve this with calculus, since it's the easiest way anyway.
The position equation is
That equation will give us the height of the rock at ANY TIME during its travels. I could find the height at 2 seconds by plugging in a 2 for t; I could find the height at 12 seconds by plugging in a 12 for t, etc.
The first derivative of position is velocity:
v(t) = -3.72t + 15 and you stated that the rock will be at its max height when the velocity is 0, so we plug in a 0 for v(t):
0 = -3.72t + 15 and solve for t:\
-15 = -3.72t so
t = 4.03 seconds. This is how long it takes to get to its max height. Knowing that, we can plug 4.03 seconds into the position equation to find the height at 4.03 seconds:
s(4.03) = -1.86(4.03)² + 15(4.03) so
s(4.03) = 30.2 meters.
Calculus is amazing. Much easier than most methods to solve problems like this.
You need to use the distance formula


so the distance between points (5,-2) and (-3,8) is

which won't simplify so it stays as is
Answer:
Step-by-step explanation:
5(x + 3) Remove the brackets.
5*x + 3*5 Combine
5x + 15
Z° + 43° = 180°-------(linear angles)
z° = 180 - 43°
z = 137°
Hope this helps.