Answer:
See proof below
Step-by-step explanation:
An equivalence relation R satisfies
- Reflexivity: for all x on the underlying set in which R is defined, (x,x)∈R, or xRx.
- Symmetry: For all x,y, if xRy then yRx.
- Transitivity: For all x,y,z, If xRy and yRz then xRz.
Let's check these properties: Let x,y,z be bit strings of length three or more
The first 3 bits of x are, of course, the same 3 bits of x, hence xRx.
If xRy, then then the 1st, 2nd and 3rd bits of x are the 1st, 2nd and 3rd bits of y respectively. Then y agrees with x on its first third bits (by symmetry of equality), hence yRx.
If xRy and yRz, x agrees with y on its first 3 bits and y agrees with z in its first 3 bits. Therefore x agrees with z in its first 3 bits (by transitivity of equality), hence xRz.
Answer:
w=1.4
Step-by-step explanation:
11w+5w-1=65w-36
16w-1=65w-36
16w-65w= -36+1
-49w= -35
w= -35/-49
w= 1.4
Fix you some claculations?
Answer:
15°
Step-by-step explanation:
Total degrees of a triangle is 180°
Angle 1: ?
Angle 2: 81°
Angle 3: 84°
180°- 81°- 84° = 15°
Answer:
31.5 m
Step-by-step explanation:
Let w represent the width of the pool.
Since the length is 15 m greater than the width, it can be represented by w + 15.
Use the perimeter formula, p = 2l + 2w. Plug in the perimeter, and w + 15 as l into the formula:
p = 2l + 2w
96 = 2(w + 15) + 2w
96 = 2w + 30 + 2w
96 = 4w + 30
66 = 4w
16.5 = w
So, the width of the pool is 16.5 m. Add 15 to this to find the length:
16.5 + 15
= 31.5
The length of the pool is 31.5 m