hello :
<span>(-101)+102+(-103)+104+...+(-199)+200
=( </span>(-101)+(-103) +....+ (-199) ) +( (102) + ( 104) +....+(200))
let : A = ( (-101)+(-103) +....+ (-199) )
B = ( (102) + ( 104) +....+(200))
note : the sum n term of arithemtic sequence
S= n/2(u1 + un)
un = u1 +(n-1) d u1 : the first term d : the common diference
in A : u1= -101 d = -2 n = 49...
in B : u1 =102 d=2 n= 49
A = 49/2(-101-199) =-7350
B=49/2(102+200)=4949
(-101)+102+(-103)+104+...+(-199)+200 = A+B =-2401
lllluvyvyvyvtctctvtvtctvtctctctctctctctvtvyvyvyvyvyvyvtvtv
Y= 7x - 7z -9
+9 +9 Y+9+7z /7=x
Y+9 = 7x - 7z
+7z +7z
Y+9+7z = 7x
/7 /7
Answer:
Break-even point in units= 120 units
Step-by-step explanation:
Giving the following formula:
Selling price= $17.5
Unitary cost= $15
Fixed costs= $300
<u>To calculate the break-even point in units, we need to use the following formula:</u>
<u></u>
Break-even point in units= fixed costs/ contribution margin per unit
Break-even point in units= 300 / (17.5 - 15)
Break-even point in units= 120 units
If you would like to calculate x = 30 - 20, you can do this like this:
x = 30 - 20
x = 10
The correct result would be x = 10.