I've attached the complete question.
Answer:
Only participant 1 is not cheating while the rest are cheating.
Because only participant 1 has a z-score that falls within the 95% confidence interval.
Step-by-step explanation:
We are given;
Mean; μ = 3.3
Standard deviation; s = 1
Participant 1: X = 4
Participant 2: X = 6
Participant 3: X = 7
Participant 4: X = 0
Z - score for participant 1:
z = (x - μ)/s
z = (4 - 3.3)/1
z = 0.7
Z-score for participant 2;
z = (6 - 3.3)/1
z = 2.7
Z-score for participant 3;
z = (7 - 3.3)/1
z = 3.7
Z-score for participant 4;
z = (0 - 3.3)/1
z = -3.3
Now from tables, the z-score value for confidence interval of 95% is between -1.96 and 1.96
Now, from all the participants z-score only participant 1 has a z-score that falls within the 95% confidence interval.
Thus, only participant 1 is not cheating while the rest are cheating.
Answer:
f(g(x)) = 2x +(-5)
Step-by-step explanation:
Put the argument value into the function and simplify the result.
f(g(x)) = f(x -3) = 2(x- 3) +1 = 2x -6 +1
f(g(x)) = 2x +(-5)
Answer:
The answer is True.
Step-by-step explanation:
Sales variance is computed in same manner as cost variance that is computing both price and volume variance. However interpretation of end result will not be same. For example in material price variance if
A = actual purchase price = $ 4, B = standard purchase price= $ 5 and Qt= quantity purchased = 500 units then
Material price varaince = 500 (5-4) = 500,
This gives us favourable price variance of 500 dollars. However in sales price variance if
A = actual sales price = $ 4, B = standard sale price= $ 5 and Qt= quantity sold = 500 units then
Sale price varaince = 500 (5-4) = (500)
This gives us unfavourable sales price variance of 500 dollars.
This show that formulas to compute variances are same but sale price decrease give us un favorable variance and cost price decrease gives us favorable price variance and vice versa.
Answer:
None?
Step-by-step explanation:
After using the 4 answers using what I think is (x,y,z) none of the answers were true.