Answer:
Proved
Step-by-step explanation:
Given: EC || AC, DB || AC, ∠A = ∠F
Prove: ΔMDF ∼ ΔNCA
Solution
See diagram attached to the solution to better understand the following workings.
Redrawing ΔMDF or rotating to be facing the same direction.
EC is parallel to AC
DB parallel to AC
Using similar triangle theorem:
If ΔMDF ∼ ΔNCA
Ratio of Corresponding sides would be equal
(adjacent of ΔMDF)/(adjacent of ΔNCA) = (Opposite of ΔMDF)/(opposite of ΔNCA) = (hypotenuse of ΔMDF)/(hypotenuse of ΔNCA)
DF/ CA = MD/NC = FM/AN
∠A = ∠F
∠M = ∠N
∠D = ∠C
Since the ratio of Corresponding sides and angle are equal, ΔMDF is similar to ΔNCA.
ΔMDF ∼ ΔNCA
Answers
b = 2.77 m
A = 43.0°
C = 111.1°
cosine law to find b

b = 2.7708\ m
Find angle A with sine law
![\displaystyle \frac{\sin A}{a} = \frac{\sin B}{b} \\ \\ \sin A = \frac{a \sin B}{b} \\ \\ A = \sin^{-1} \left[ \frac{a \sin B}{b} \right] \\ \\ A = \sin^{-1} \left[ \frac{4.33 \sin 25.9}{2.7708} \right] \\ \\ A = 43.0467020](https://tex.z-dn.net/?f=%5Cdisplaystyle%0A%5Cfrac%7B%5Csin%20A%7D%7Ba%7D%20%3D%20%5Cfrac%7B%5Csin%20B%7D%7Bb%7D%20%5C%5C%20%5C%5C%0A%5Csin%20A%20%3D%20%5Cfrac%7Ba%20%5Csin%20B%7D%7Bb%7D%20%5C%5C%20%5C%5C%0AA%20%3D%20%5Csin%5E%7B-1%7D%20%5Cleft%5B%20%5Cfrac%7Ba%20%5Csin%20B%7D%7Bb%7D%20%20%5Cright%5D%20%5C%5C%20%5C%5C%0AA%20%3D%20%5Csin%5E%7B-1%7D%20%5Cleft%5B%20%5Cfrac%7B4.33%20%5Csin%2025.9%7D%7B2.7708%7D%20%20%5Cright%5D%20%20%5C%5C%20%5C%5C%0AA%20%3D%2043.0467020)
Find C with angles in triangle sum to 180
A + B + C = 180
C = 180 - A - B
C = 180 - 43.0467020 - 25.9
C = 111.1
Considering the given function, the table is completed as follows:
x|y
-12|15
-6| 11
3|5
15|-3
<h3>Which is the function?</h3>
The function is defined by:

Hence, when x = -12:

When x = -6:

When x = 3:

When x = 15:

More can be learned about functions at brainly.com/question/25537936
#SPJ1
Answer:
Wheres the picture-
Step-by-step explanation:
First, move 9x^2 to the right:
7y^2 = 42 - 9x^2
Then, divide 7 on both sides:
y^2 = 6 - 9/7 * x^2