1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adell [148]
3 years ago
5

4x + 9 = 2x + 15 .. I need help

Mathematics
1 answer:
valkas [14]3 years ago
3 0

Answer:

x = 3

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

Step-by-step explanation:

<u>Step 1: Define Equation</u>

4x + 9 = 2x + 15

<u>Step 2: Solve for </u><em><u>x</u></em>

  1. Subtract 2x on both sides:                    2x + 9 = 15
  2. Subtract 9 on both sides:                      2x = 6
  3. Divide 2 on both sides:                          x = 3

<u>Step 3: Check</u>

<em>Plug in x into the original equation to verify it's a solution.</em>

  1. Substitute in <em>x</em>:                    4(3) + 9 = 2(3) + 15
  2. Multiply:                               12 + 9 = 6 + 15
  3. Add:                                     21 = 21

Here we see that 21 does indeed equal 21.

∴ x = 3 is the solution to the equation.

You might be interested in
I need help asap pls and thank you ;)
olga55 [171]

Answer:

\text{Length of AB is }\frac{ah}{a+h}

Step-by-step explanation:

Given △KMN, ABCD is a square where KN=a, MP⊥KN, MP=h.

we have to find the length of AB.

Let the side of square i.e AB is x units.

As ADCB is a square ⇒ ∠CDN=90°⇒∠CDP=90°

⇒ CP||MP||AB

In ΔMNP and ΔCND

∠NCD=∠NMP     (∵ corresponding angles)

∠NDC=∠NPM     (∵ corresponding angles)

By AA similarity rule,  ΔMNP~ΔCND

Also, ΔKAP~ΔKPM by similarity rule as above.

Hence, corresponding sides are in proportion

\frac{ND}{NP}=\frac{CD}{MP} \thinspace\thinspace and\thinspace\thinspace \frac{KA}{KP}=\frac{AB}{PM} \\\\\frac{ND}{NP}=\frac{x}{h} \thinspace\thinspace and\thinspace\thinspace \frac{KA}{KP}=\frac{x}{h}\\\\\frac{NP}{ND}=\frac{h}{x} \thinspace\thinspace and\thinspace\thinspace \frac{KP}{KA}=\frac{h}{x}\\\\\frac{PD}{ND}=\frac{h}{x}-1 \thinspace\thinspace and\thinspace\thinspace \frac{AP}{KA}=\frac{h}{x}-1\\

KA(\frac{h}{x}-1)=AP

ND(\frac{h}{x}-1)=PD

Adding above two, we get

(KA+ND)(\frac{h}{x}-1)=(AP+PD)

⇒ (KN-AD)=\frac{x}{(\frac{h}{x}-1)}

⇒ a-x=\frac{x}{(\frac{h}{x}-1)}

⇒ a-x=\frac{x^2}{h-x}

⇒ x^2=ah-ax-xh+x^2

⇒ x(h+a)=ah

⇒ x=\frac{ah}{a+h}

3 0
3 years ago
True or false question
Romashka [77]
The answer should be true
6 0
3 years ago
The scatter plot for which type of data is most likely to suggest a linear association between
chubhunter [2.5K]

Answer:

level of water in a reservoir each....

Step-by-step explanation:

4 0
3 years ago
Remember to show work and explain. Use the math font.
MrMuchimi

Answer:

\large\boxed{1.\ f^{-1}(x)=4\log(x\sqrt[4]2)}\\\\\boxed{2.\ f^{-1}(x)=\log(x^5+5)}\\\\\boxed{3.\ f^{-1}(x)=\sqrt{4^{x-1}}}

Step-by-step explanation:

\log_ab=c\iff a^c=b\\\\n\log_ab=\log_ab^n\\\\a^{\log_ab}=b\\\\\log_aa^n=n\\\\\log_{10}a=\log a\\=============================

1.\\y=\left(\dfrac{5^x}{2}\right)^\frac{1}{4}\\\\\text{Exchange x and y. Solve for y:}\\\\\left(\dfrac{5^y}{2}\right)^\frac{1}{4}=x\qquad\text{use}\ \left(\dfrac{a}{b}\right)^n=\dfrac{a^n}{b^n}\\\\\dfrac{(5^y)^\frac{1}{4}}{2^\frac{1}{4}}=x\qquad\text{multiply both sides by }\ 2^\frac{1}{4}\\\\\left(5^y\right)^\frac{1}{4}=2^\frac{1}{4}x\qquad\text{use}\ (a^n)^m=a^{nm}\\\\5^{\frac{1}{4}y}=2^\frac{1}{4}x\qquad\log_5\ \text{of both sides}

\log_55^{\frac{1}{4}y}=\log_5\left(2^\frac{1}{4}x\right)\qquad\text{use}\ a^\frac{1}{n}=\sqrt[n]{a}\\\\\dfrac{1}{4}y=\log(x\sqrt[4]2)\qquad\text{multiply both sides by 4}\\\\y=4\log(x\sqrt[4]2)

--------------------------\\2.\\y=(10^x-5)^\frac{1}{5}\\\\\text{Exchange x and y. Solve for y:}\\\\(10^y-5)^\frac{1}{5}=x\qquad\text{5 power of both sides}\\\\\bigg[(10^y-5)^\frac{1}{5}\bigg]^5=x^5\qquad\text{use}\ (a^n)^m=a^{nm}\\\\(10^y-5)^{\frac{1}{5}\cdot5}=x^5\\\\10^y-5=x^5\qquad\text{add 5 to both sides}\\\\10^y=x^5+5\qquad\log\ \text{of both sides}\\\\\log10^y=\log(x^5+5)\Rightarrow y=\log(x^5+5)

--------------------------\\3.\\y=\log_4(4x^2)\\\\\text{Exchange x and y. Solve for y:}\\\\\log_4(4y^2)=x\Rightarrow4^{\log_4(4y^2)}=4^x\\\\4y^2=4^x\qquad\text{divide both sides by 4}\\\\y^2=\dfrac{4^x}{4}\qquad\text{use}\ \dfrac{a^n}{a^m}=a^{n-m}\\\\y^2=4^{x-1}\Rightarrow y=\sqrt{4^{x-1}}

6 0
4 years ago
If f(x)=2x and g(x) = x+5 then (fg)(x)=
pav-90 [236]
(fg)(x)= 2x^2+10x

Step-by-Step-Explanation:
(fg)(x)=(f(x))(g(x))
(fg)(x)=(2x)(x+5)
(fg)(x)=2x^2+10x
5 0
3 years ago
Other questions:
  • Use long division to solve (x^3-2x^2-8) / (x+2)
    6·1 answer
  • Help asap now !!!!!<br>ANYONE
    5·1 answer
  • How many different ways can this ray be named? What are those names?
    14·1 answer
  • A figure formed by two rays that have the same endpoint.
    5·1 answer
  • How do I solve <br>16.00 - 6.75 = ?
    12·1 answer
  • In triangle ABC, the measure of angle BCA is 90, segment AC is 12 units, and segment BC is 9 units. If D is a point on hypotenus
    13·1 answer
  • What is the value of s?
    6·2 answers
  • 23 + 7 + 15 =<br> Simplify each expression. Justify each step
    6·1 answer
  • Find a number which decreased by 10 is 4 times its opposites.
    8·2 answers
  • Find the probability of exactly two
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!