1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bess [88]
3 years ago
9

Could u plz answer this2x-7=133x+4=25​

Mathematics
1 answer:
sashaice [31]3 years ago
5 0

Answer:

x=10

Step-by-step explanation:

You might be interested in
Use stoke's theorem to evaluate∬m(∇×f)⋅ds where m is the hemisphere x^2+y^2+z^2=9, x≥0, with the normal in the direction of the
ludmilkaskok [199]
By Stokes' theorem,

\displaystyle\int_{\partial\mathcal M}\mathbf f\cdot\mathrm d\mathbf r=\iint_{\mathcal M}\nabla\times\mathbf f\cdot\mathrm d\mathbf S

where \mathcal C is the circular boundary of the hemisphere \mathcal M in the y-z plane. We can parameterize the boundary via the "standard" choice of polar coordinates, setting

\mathbf r(t)=\langle 0,3\cos t,3\sin t\rangle

where 0\le t\le2\pi. Then the line integral is

\displaystyle\int_{\mathcal C}\mathbf f\cdot\mathrm d\mathbf r=\int_{t=0}^{t=2\pi}\mathbf f(x(t),y(t),z(t))\cdot\dfrac{\mathrm d}{\mathrm dt}\langle x(t),y(t),z(t)\rangle\,\mathrm dt
=\displaystyle\int_0^{2\pi}\langle0,0,3\cos t\rangle\cdot\langle0,-3\sin t,3\cos t\rangle\,\mathrm dt=9\int_0^{2\pi}\cos^2t\,\mathrm dt=9\pi

We can check this result by evaluating the equivalent surface integral. We have

\nabla\times\mathbf f=\langle1,0,0\rangle

and we can parameterize \mathcal M by

\mathbf s(u,v)=\langle3\cos v,3\cos u\sin v,3\sin u\sin v\rangle

so that

\mathrm d\mathbf S=(\mathbf s_v\times\mathbf s_u)\,\mathrm du\,\mathrm dv=\langle9\cos v\sin v,9\cos u\sin^2v,9\sin u\sin^2v\rangle\,\mathrm du\,\mathrm dv

where 0\le v\le\dfrac\pi2 and 0\le u\le2\pi. Then,

\displaystyle\iint_{\mathcal M}\nabla\times\mathbf f\cdot\mathrm d\mathbf S=\int_{v=0}^{v=\pi/2}\int_{u=0}^{u=2\pi}9\cos v\sin v\,\mathrm du\,\mathrm dv=9\pi

as expected.
7 0
3 years ago
I don't understand this nonsense !
mel-nik [20]
Well first you do 6÷3=2. Then you do 2*5= 10. Also do 20+10=30-15=15. So your answer is 15
5 0
3 years ago
Hey! I am stuck on this question anyone mind helping me? and tysm for the people who helped me! <3 have a nice day!
Andrej [43]

Answer: 166 2/3m

Step-by-step explanation:

Area of a rectangle = length times width

Length: 16 2/3

To find the width, multiply it by 3/5.

w = 16 2/3 ·  3/5

w = 10

Then, multiply the length by the width.

a = l · w

a = 16 2/3 · 10

a = 166 2/3m

4 0
3 years ago
3) Graph by making a<br> table.<br> y=x
Zanzabum

Answer:

See attachment for graph

Step-by-step explanation:

Given

y = x

Required

Plot the graph

First, we need to make a table.

To do this, we assume values for x

When x = 1

y = x = 1

(x_1,y_1) = (1,1)

When x = 2

y = x = 2

(x_2,y_2) = (2,2)

When x = 3

y = x = 3

(x_3,y_3) = (3,3)

When x = 4

y = x = 4

(x_4,y_4) = (4,4)

So, the table is:

x || 1 || 2 || 3 || 4

y || 1 || 2 || 3 || 4

<em>See attachment for graph</em>

8 0
3 years ago
Be sure to answer all parts. List the evaluation points corresponding to the midpoint of each subinterval to three decimal place
gayaneshka [121]

Answer:

The Riemann Sum for \int\limits^5_4 {x^2+4} \, dx with n = 4 using midpoints is about 24.328125.

Step-by-step explanation:

We want to find the Riemann Sum for \int\limits^5_4 {x^2+4} \, dx with n = 4 using midpoints.

The Midpoint Sum uses the midpoints of a sub-interval:

\int_{a}^{b}f(x)dx\approx\Delta{x}\left(f\left(\frac{x_0+x_1}{2}\right)+f\left(\frac{x_1+x_2}{2}\right)+f\left(\frac{x_2+x_3}{2}\right)+...+f\left(\frac{x_{n-2}+x_{n-1}}{2}\right)+f\left(\frac{x_{n-1}+x_{n}}{2}\right)\right)

where \Delta{x}=\frac{b-a}{n}

We know that a = 4, b = 5, n = 4.

Therefore, \Delta{x}=\frac{5-4}{4}=\frac{1}{4}

Divide the interval [4, 5] into n = 4 sub-intervals of length \Delta{x}=\frac{1}{4}

\left[4, \frac{17}{4}\right], \left[\frac{17}{4}, \frac{9}{2}\right], \left[\frac{9}{2}, \frac{19}{4}\right], \left[\frac{19}{4}, 5\right]

Now, we just evaluate the function at the midpoints:

f\left(\frac{x_{0}+x_{1}}{2}\right)=f\left(\frac{\left(4\right)+\left(\frac{17}{4}\right)}{2}\right)=f\left(\frac{33}{8}\right)=\frac{1345}{64}=21.015625

f\left(\frac{x_{1}+x_{2}}{2}\right)=f\left(\frac{\left(\frac{17}{4}\right)+\left(\frac{9}{2}\right)}{2}\right)=f\left(\frac{35}{8}\right)=\frac{1481}{64}=23.140625

f\left(\frac{x_{2}+x_{3}}{2}\right)=f\left(\frac{\left(\frac{9}{2}\right)+\left(\frac{19}{4}\right)}{2}\right)=f\left(\frac{37}{8}\right)=\frac{1625}{64}=25.390625

f\left(\frac{x_{3}+x_{4}}{2}\right)=f\left(\frac{\left(\frac{19}{4}\right)+\left(5\right)}{2}\right)=f\left(\frac{39}{8}\right)=\frac{1777}{64}=27.765625

Finally, use the Midpoint Sum formula

\frac{1}{4}(21.015625+23.140625+25.390625+27.765625)=24.328125

This is the sketch of the function and the approximating rectangles.

5 0
4 years ago
Other questions:
  • Write Three equations that have the same solution as 25x + (-15) = -85<br> Pls answer
    7·1 answer
  • Claim amounts for wind damage to insured homes are independent random variables with common density f(x) = ( 3 x4 , x &gt; 1 0 ,
    8·1 answer
  • Find the angle θθ between the vectors v=2i+kv=2i+k, w=j−3kw=j−3k.
    15·1 answer
  • How to find the radius of a cylinder given only the height?
    13·1 answer
  • What is the rounding or compatible numbers to estimate the sum of 256+321
    10·1 answer
  • What is 5/3x 1/6= -1
    12·1 answer
  • A triangular flag has the same area as a rectangle that is 6 feet by 7 feet. If the length of the base of the flag is 6 feet, wh
    13·1 answer
  • Rewite the expression in exponential form
    8·1 answer
  • Love by factoring or finding square roots. (x+5)^2 = 36
    6·2 answers
  • How many vertices does a prism with 54 edges have?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!