The Law Of Syllogism, which is also called Reasoning by Transitivity, is basically if a = b and b = c, then a = c, which is also the transitive property. Hence the alternate name. It can be used for mathematical deductions and is mainly used in the unit of logic statements, such as conditional and inverse statements. Here is an example:
If it is raining today, then I will wear my raincoat.
If I wear my raincoat today, then I will wear my boots.
When we use the Law of Syllogism, we get:
If it is raining today, then I will wear my boots.
Hope this helps and have a nice day!
We would need a sample size of 560.
We first calculate the z-score associated. with this level of confidence:
Convert 95% to a decimal: 95% = 95/100 = 0.95
Subtract from 1: 1-0.95 = 0.05
Divide by 2: 0.05/2 = 0.025
Subtract from 1: 1-0.025 = 0.975
Using a z-table (http://www.z-table.com) we see that this is associated with a z-score of 1.96.
The margin of error, ME, is given by:

We want ME to be 4%; 4% = 4/100 = 0.04. Substituting this into our equation, as well as our proportion and z-score,
9514 1404 393
Answer:
47°
Step-by-step explanation:
The law of sines helps you find angle T. From there, you can find angle S.
sin(T)/t = sin(R)/r
sin(T) = (t/r)sin(R) = (10/20)sin(104°)
T = arcsin(sin(104°)/2) ≈ 29°
Then angle S is ...
S = 180° -R -T = 180° -104° -29°
∠S = 47°
Answer:
0.67
Step-by-step explanation:
2/3= to 0.66 which means 0.67 would be technally larger than 0.66
Answer:
m∠C=28°, m∠A=62°, AC=34.1 units
Step-by-step explanation:
Given In ΔABC, m∠B = 90°, , and AB = 16 units. we have to find m∠A, m∠C, and AC.
As, cos(C)={15}/{17}
⇒ angle C=cos^{-1}(\frac{15}{17})=28.07^{\circ}\sim28^{\circ}
By angle sum property of triangle,
m∠A+m∠B+m∠C=180°
⇒ m∠A+90°+28°=180°
⇒ m∠A=62°
Now, we have to find the length of AC
sin 28^{\circ}=\frac{AB}{AC}
⇒ AC=\frac{16}{sin 28^{\circ}}=34.1units
The length of AC is 34.1 units