Y^3 * y^5 = y^8. you add the exponents
Answer:
(0,2)
Step-by-step explanation:
solve by addition/elimination
2x + 3y= 6
–3x + 5y = 10
multiply first equation by 3 and second one by 2 to eliminate x)
6x+9y=18
-6x+10y=20 (add the two equations)
6x+9y-6x+10y=38
19y=38
y=38/19=2
2x+3y=6
2x=6-6
x=0
(2x - 6) - (10x - 7) # Starting expression
-8x - 1 # Combine like terms
Final answer:
-8x - 1
Hope this helps!

Here, we want to find the diagonal of the given solid
To do this, we need the appropriate triangle
Firstly, we need the diagonal of the base
To get this, we use Pythagoras' theorem for the base
The other measures are 6 mm and 8 mm
According ro Pythagoras' ; the square of the hypotenuse equals the sum of the squares of the two other sides
Let us have the diagonal as l
Mathematically;
![\begin{gathered} l^2=6^2+8^2 \\ l^2\text{ = 36 + 64} \\ l^2\text{ =100} \\ l\text{ = }\sqrt[]{100} \\ l\text{ = 10 mm} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20l%5E2%3D6%5E2%2B8%5E2%20%5C%5C%20l%5E2%5Ctext%7B%20%3D%2036%20%2B%2064%7D%20%5C%5C%20l%5E2%5Ctext%7B%20%3D100%7D%20%5C%5C%20l%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B100%7D%20%5C%5C%20l%5Ctext%7B%20%3D%2010%20mm%7D%20%5Cend%7Bgathered%7D)
Now, to get the diagonal, we use the triangle with height 5 mm and the base being the hypotenuse we calculated above
Thus, we calculate this using the Pytthagoras' theorem as follows;
<h3>The given expression as single exponent is:</h3>

<em><u>Solution:</u></em>
<em><u>Given expression is:</u></em>

In exponents,
When the base is same, exponents can be added
Which means,

Therefore,

Thus the given expression as single exponent is:
