Answer:
10 -> 14
15-> 19
20-> 24
25-> 29
Step-by-step explanation:
Add 4 each time
Answer:
0.8041 = 80.41% probability that a given battery will last between 2.3 and 3.6 years
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
A certain type of storage battery lasts, on average, 3.0 years with a standard deviation of 0.5 year
This means that 
What is the probability that a given battery will last between 2.3 and 3.6 years?
This is the p-value of Z when X = 3.6 subtracted by the p-value of Z when X = 2.3. So
X = 3.6



has a p-value of 0.8849
X = 2.3



has a p-value of 0.0808
0.8849 - 0.0808 = 0.8041
0.8041 = 80.41% probability that a given battery will last between 2.3 and 3.6 years
For this case we must express the following expression algebraically:
<em>"The quotient of b and 2 minus 4 is at least 26"</em>
So we have to:
The quotient of b and 2 minus 4, is represented as:
We have different signs subtracted and the sign of the major is placed:

Thus, the expression is written as:

ANswer:

Answer:
f(-8) = 104
Step-by-step explanation:
f(t) = t^2 - 5t
Let t=-8
f(-8) = (-8)^2 -5(-8)
= 64 +40
= 104