Answer:
i have no clue
Step-by-step explanation:
Answer:
m = -5, 0
Step-by-step explanation:
Easiest and quickest way to do this is to graph the equation and find where it intersects the x-axis. If not, then use completing the square or quadratic formula to find your roots.
Answer:
1)
A)
We must use the formula b x h/2 12 x 8/2 = 48
A=48
B)
We must use the formula 1/2a root c squared - a squared
Solving and substituing will get you 35.78
2)
A)
We must divide 81 by 2 to get 9. Since this is a square, all sides will be 9. Then, we must add 9 four times to get 36 cm as our perimeter
B) If we draw the square with a diagonal line, we can understand that the diagonal line (hypotenus) is s root 2.
3) The formula for this area of a triangle is h x b/2. We must substitute the numbers to get our answer:
h x b /2 = 10 x 20/2 = 200/2 = 100
AREA IS 100cm squared
Step-by-step explanation:
Answer:
y = -1/10x^2 +2.5
Step-by-step explanation:
The distance from focus to directrix is twice the distance from focus to vertex. The focus-directrix distance is the difference in y-values:
-1 -4 = -5
So, the distance from focus to vertex is p = -5/2 = -2.5. This places the focus 2.5 units below the vertex. Then the vertex is at (h, k) = (0, -1) +(0, 2.5) = (0, 1.5).
The scale factor of the parabola is 1/(4p) = 1/(4(-2.5)) = -1/10. Then the equation of the parabola is ...
y = (1/(4p))(x -h) +k
y = -1/10x^2 +2.5
_____
You can check the graph by making sure the focus and directrix are the same distance from the parabola everywhere. Of course, if the vertex is halfway between focus and directrix, the distances are the same there. Another point that is usually easy to check is the point on the parabola that is even with the focus. It should be as far from the focus as it is from the directrix. In this parabola, the focus is 5 units from the directrix, and we see the points on the parabola at y=-1 are 5 units from the focus.