1. A.Use law of cosines. cosA=(b^2+c^2-a^2)/(2bc) because A is the included angle between b and c. Plug in A=50 degrees, b=13, c=6. cos50=(13^2+6^2-a^2)/(2*13*6), a^2=104.7,a=10.2 approximately, so choose A.
2. A.Use law of cosines again. cosC=(a^2+b^2-c^2)/(2ab). C=95 degrees, a=12, b=22. Plug in, cos95=(12^2+22^2-c^2)/(2*12*22), solve the equation, c^2=674, c=26 approximately. The use law of sines to solve for angle A (also works for B), a/sinA=c/sinC, 12/sinA=26/sin95, sinA=0.46, A=arcsin(0.46)=27.6. Choose A.
3. Answer is A. Area=1/2bc*sinA, since A is the included angle between b and c. Plug in b=30, c=14, A=50 degrees, area=1/2*14*30*sin50=160. 87, so the answer is A.
4. D. As long as the sum of any two sides of the triangle is bigger than the third, the triangle exists. 240+121>263, 240+263>121, 263+121>240, so it exists. To use Heron's formula, first find the semiperimeter, (240+263+121)/2=312. A=\sqrt(312*(312-240)*(312-263)*(312-121))=14499.7 approximately, so choose D.
5. 300. The included angle between the two paths is C=49.17+90=139.17 degrees. The lengths of the two paths are a=150, b=170. c is the distance we want. Use the law of cosines, cosC=(a^2+b^2-c^2)/(2ab). Plug in, c^2=89989, c=300 approximately.
2×8 is 16 then you do the other side but you put a one in front of the- so it goes 1 times 3x is 3x and you turn the minus into a plus sign and turn the positive 34 into a negative 34 so -34× 1 is -34 then write that out to look like 14-2X+16= 5X -3X + -34 then you add or subtract the commons which is 14+16= 30 and 5X-3X=2X so now your equation is 30-2x=2X+(-34) then you want to get your X on the same side so you subtract 2X from the right side and the left side then your left 30=-34