1. A.Use law of cosines. cosA=(b^2+c^2-a^2)/(2bc) because A is the included angle between b and c. Plug in A=50 degrees, b=13, c=6. cos50=(13^2+6^2-a^2)/(2*13*6), a^2=104.7,a=10.2 approximately, so choose A.
2. A.Use law of cosines again. cosC=(a^2+b^2-c^2)/(2ab). C=95 degrees, a=12, b=22. Plug in, cos95=(12^2+22^2-c^2)/(2*12*22), solve the equation, c^2=674, c=26 approximately. The use law of sines to solve for angle A (also works for B), a/sinA=c/sinC, 12/sinA=26/sin95, sinA=0.46, A=arcsin(0.46)=27.6. Choose A.
3. Answer is A. Area=1/2bc*sinA, since A is the included angle between b and c. Plug in b=30, c=14, A=50 degrees, area=1/2*14*30*sin50=160. 87, so the answer is A.
4. D. As long as the sum of any two sides of the triangle is bigger than the third, the triangle exists. 240+121>263, 240+263>121, 263+121>240, so it exists. To use Heron's formula, first find the semiperimeter, (240+263+121)/2=312. A=\sqrt(312*(312-240)*(312-263)*(312-121))=14499.7 approximately, so choose D.
5. 300. The included angle between the two paths is C=49.17+90=139.17 degrees. The lengths of the two paths are a=150, b=170. c is the distance we want. Use the law of cosines, cosC=(a^2+b^2-c^2)/(2ab). Plug in, c^2=89989, c=300 approximately.
(a) x < 1 : the values of x are smaller than than 1 (e.g. possible values are 0, -1, -2, etc) and since the circle is not shaded it means that 1 isn't a possible value of x
(b) x -2 : the circle is filled therefore -2 is included in the answer
Question 17
(a) unfilled dot above -2 and arrow pointing to the left
(b) shaded circle above 4 with and arrow pointing to the right →
Let's start by imagining a rock being thrown to the air. Let's say that going up is the positive direction and so, going down is the negative. The acceleration is pointing down (because of gravity) so it's always negative. While the rock is going up, it's velocity/speed is positive, but the acceleration is negative. While the rock is going down, both acceleration and speed are negative. This shows that the first statemente is true, but the second is false. You can also think that if you define going DOWN as the POSITIVE direction, you can have both positive acceleration and speed, or positive acceleration and negative speed.