1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vodka [1.7K]
3 years ago
6

Assume that the helium porosity (in percentage) of coal samples taken from any particular seam is normally distributed with true

standard deviation .75. a. Compute a 95% CI for the true average porosity of a certain seam if the average porosity for 20 specimens from the seam was 4.85. b. Compute a 98% CI for true average porosity of another seam based on 16 specimens with a sample average porosity of 4.56.
Mathematics
1 answer:
IgorLugansk [536]3 years ago
7 0

Answer:

(a) 95% confidence interval for the true average porosity of a certain seam is [4.52 , 5.18].

(b) 98% confidence interval for the true average porosity of a another seam is [4.12 , 4.99].

Step-by-step explanation:

We are given that the helium porosity (in percentage) of coal samples taken from any particular seam is normally distributed with true standard deviation 0.75.

(a) Also, the average porosity for 20 specimens from the seam was 4.85.

Firstly, the pivotal quantity for 95% confidence interval for the population mean is given by;

                      P.Q. =  \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }  ~ N(0,1)

where, \bar X = sample average porosity = 4.85

            \sigma = population standard deviation = 0.75

            n = sample of specimens = 20

            \mu = true average porosity

<em>Here for constructing 95% confidence interval we have used One-sample z test statistics as we know about population standard deviation.</em>

<u>So, 95% confidence interval for the true mean, </u>\mu<u> is ;</u>

P(-1.96 < N(0,1) < 1.96) = 0.95  {As the critical value of z at 2.5% level

                                                     of significance are -1.96 & 1.96}  

P(-1.96 < \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } } < 1.96) = 0.95

P( -1.96 \times {\frac{\sigma}{\sqrt{n} } } < {\bar X-\mu} < 1.96 \times {\frac{\sigma}{\sqrt{n} } } ) = 0.95

P( \bar X-1.96 \times {\frac{\sigma}{\sqrt{n} } } < \mu < \bar X+1.96 \times {\frac{\sigma}{\sqrt{n} } } ) = 0.95

<u>95% confidence interval for</u> \mu = [ \bar X-1.96 \times {\frac{\sigma}{\sqrt{n} } } , \bar X+1.96 \times {\frac{\sigma}{\sqrt{n} } } ]

                                            = [ 4.85-1.96 \times {\frac{0.75}{\sqrt{20} } } , 4.85+1.96 \times {\frac{0.75}{\sqrt{20} } } ]

                                            = [4.52 , 5.18]

Therefore, 95% confidence interval for the true average porosity of a certain seam is [4.52 , 5.18].

(b) Now, there is another seam based on 16 specimens with a sample average porosity of 4.56.

The pivotal quantity for 98% confidence interval for the population mean is given by;

                      P.Q. =  \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }  ~ N(0,1)

where, \bar X = sample average porosity = 4.56

            \sigma = population standard deviation = 0.75

            n = sample of specimens = 16

            \mu = true average porosity

<em>Here for constructing 98% confidence interval we have used One-sample z test statistics as we know about population standard deviation.</em>

<u>So, 98% confidence interval for the true mean, </u>\mu<u> is ;</u>

P(-2.3263 < N(0,1) < 2.3263) = 0.98  {As the critical value of z at 1% level

                                                   of significance are -2.3263 & 2.3263}  

P(-2.3263 < \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } } < 2.3263) = 0.98

P( -2.3263 \times {\frac{\sigma}{\sqrt{n} } } < {\bar X-\mu} <  2.3263 ) = 0.98

P( \bar X-2.3263 \times {\frac{\sigma}{\sqrt{n} } } < \mu < \bar X+2.3263 \times {\frac{\sigma}{\sqrt{n} } } ) = 0.98

<u>98% confidence interval for</u> \mu = [ \bar X-2.3263 \times {\frac{\sigma}{\sqrt{n} } } , \bar X+2.3263 \times {\frac{\sigma}{\sqrt{n} } } ]

                                            = [ 4.56-2.3263 \times {\frac{0.75}{\sqrt{16} } } , 4.56+2.3263 \times {\frac{0.75}{\sqrt{16} } } ]

                                            = [4.12 , 4.99]

Therefore, 98% confidence interval for the true average porosity of a another seam is [4.12 , 4.99].

You might be interested in
V= <img src="https://tex.z-dn.net/?f=v%3D%20%5Cpi%20r%20%5E%7B2%7D%20h%20%20for%20%20%202%20" id="TexFormula1" title="v= \pi r ^
swat32
V=\pi r^2h \\\\ r^2=\frac{V}{\pi h} \\\\ \boxed{r=\sqrt\frac{V}{\pi h}}
3 0
4 years ago
I NEED HELP PLEASE, THANKS! :)
Allushta [10]

Answer:  proof below

<u>Step-by-step explanation:</u>

Use the Difference formula for sin:

  sin (A - B) = sin(A)·cos(B) - cos(A)·sin(B)

sin (180° - θ) = sin(180°)·cos(θ) - cos(180°)·sin(θ)

                    =       0  · cos(θ)    -      -1  · sin(θ)

                    =              0           -           -sin(θ)

                    =                         + sin(θ)

sin (180° - θ) = sin(θ)  \checkmark

8 0
3 years ago
Read 2 more answers
What is the median 3 7 4 6 10
GenaCL600 [577]
Arrange them in ascending order
3,4,6,7,10
Median = the term in the middle = 6
7 0
3 years ago
Read 2 more answers
10^6 in standard form
nalin [4]
1000000 is the answer
6 0
3 years ago
Read 2 more answers
5 points
saw5 [17]
B.30




cause 60 is 30 halted so yeah
6 0
2 years ago
Read 2 more answers
Other questions:
  • Can anyone help me with number 3?
    13·1 answer
  • Given the replacement set {0, 1, 2, 3, 4}, solve 6x – 3 = 3.
    8·1 answer
  • 20 POINTS PLEASE HELP!!!!!!!
    5·1 answer
  • the graph shows the number of laps Kailee ran around a track over a given number of minutes. please help me someone
    12·1 answer
  • What is the inverse of y=4x-5
    9·2 answers
  • A parabola has x-intercepts at x = 1/2 and x=5. what is the equation of the parabola
    8·1 answer
  • Simplify the expression 35e^9/5e^8
    7·1 answer
  • A can of vegetables has radius 2.4 in. and height 5.6 in.
    15·2 answers
  • Irina has 3 hours to finish her final math exam. Keeping in mind that there are 60 minutes in 1 hour, how much time, on average,
    12·2 answers
  • How do you factorise 2k + 10ak
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!