<u>Story Problem</u>
Mr. Bill Gates bought a house in Italy for
and a house in Canada for
. What is the total cost of the two houses?
we know that
The total cost is the sum of the cost each house
so

therefore
the answer is
The total cost is 
Answer:
12 cups of mild
Step-by-step explanation:
3x3 is 9 and 3/4x9 is 12/4 so 3 9+3 is 12
Answer:
<em>The answers are for option (a) 0.2070 (b)0.3798 (c) 0.3938
</em>
Step-by-step explanation:
<em>Given:</em>
<em>Here Section 1 students = 20
</em>
<em>
Section 2 students = 30
</em>
<em>
Here there are 15 graded exam papers.
</em>
<em>
(a )Here Pr(10 are from second section) = ²⁰C₅ * ³⁰C₁₀/⁵⁰C₁₅= 0.2070
</em>
<em>
(b) Here if x is the number of students copies of section 2 out of 15 exam papers.
</em>
<em> here the distribution is hyper-geometric one, where N = 50, K = 30 ; n = 15
</em>
<em>Then,
</em>
<em>
Pr( x ≥ 10 ; 15; 30 ; 50) = 0.3798
</em>
<em>
(c) Here we have to find that at least 10 are from the same section that means if x ≥ 10 (at least 10 from section B) or x ≤ 5 (at least 10 from section 1)
</em>
<em>
so,
</em>
<em>
Pr(at least 10 of these are from the same section) = Pr(x ≤ 5 or x ≥ 10 ; 15 ; 30 ; 50) = Pr(x ≤ 5 ; 15 ; 30 ; 50) + Pr(x ≥ 10 ; 15 ; 30 ; 50) = 0.0140 + 0.3798 = 0.3938
</em>
<em>
Note : Here the given distribution is Hyper-geometric distribution
</em>
<em>
where f(x) = kCₓ)(N-K)C(n-x)/ NCK in that way all these above values can be calculated.</em>
Answer:
88
Step-by-step explanation:
Given:
(h⁴ + h² – 2) ÷ (h + 3).
We could obtain the remainder using the remainder theorem :
That is the remainder obtained when (h⁴ + h² – 2) is divided by (h + 3).
Using the reminder theorem,
Equate h+3 to 0 and obtain the value of h at h+3 = 0
h + 3 = 0 ; h = - 3
Substituting h = - 3 into (h⁴ + h² – 2) to obtain the remainder
h⁴ + h² – 2 = (-3)⁴ + (-3)² - 2 = 81 + 9 - 2 = 88
Hence, remainder is 88
Answer:
P(3) is true since 2(3) - 1 = 5 < 3! = 6.
Step-by-step explanation:
Let P(n) be the proposition that 2n-1 ≤ n!. for n ≥ 3
Basis: P(3) is true since 2(3) - 1 = 5 < 3! = 6.
Inductive Step: Assume P(k) holds, i.e., 2k - 1 ≤ k! for an arbitrary integer k ≥ 3. To show that P(k + 1) holds:
2(k+1) - 1 = 2k + 2 - 1
≤ 2 + k! (by the inductive hypothesis)
= (k + 1)! Therefore,2n-1 ≤ n! holds, for every integer n ≥ 3.