25.13cm^2 or 8pi. The radius of a circle is 2 x pi x r^2. R is the radius. 2 x pi x 2^2cm -> 2 x pi x 4cm -> 8cm x pi -> 25.13cm^2. Leaving the answer in terms of pi would be 8pi.
<h2>
Hello!</h2>
The answer is:
The correct option is the first option:

<h2>
Why?</h2>
To write the equation of the line in slope-interception form we need to extract all the information that we need from the graphic.
We must remember that the slope-interception form of the lines is:

Where,
y, is the function
m, is the slope of the line
x, is the variable
b, is the y-axis intercept
We can find the slope using the following formula:

Which is for this case:

As we can see from the graphic, the line is decresing, so the sign of the slope "m" will be negative, so:

We can find the value of "b" seeing where the line intercepts the y-axis.
As we can see it intercept the y-axis at: 
Then, now that we already know the value of "m" and "b", we can write the equation of the line:

So, the correct option is the first option:

Have a nice day!
Answer:
A), B) and D) are true
Step-by-step explanation:
A) We can prove it as follows:

B) When you compute the product Ax, the i-th component is the matrix of the i-th column of A with x, denote this by Ai x. Then, we have that
. Now, the colums of A are orthonormal so we have that (Ai x)^2=x_i^2. Then
.
C) Consider
. This set is orthogonal because
, but S is not orthonormal because the norm of (0,2) is 2≠1.
D) Let A be an orthogonal matrix in
. Then the columns of A form an orthonormal set. We have that
. To see this, note than the component
of the product
is the dot product of the i-th row of
and the jth row of
. But the i-th row of
is equal to the i-th column of
. If i≠j, this product is equal to 0 (orthogonality) and if i=j this product is equal to 1 (the columns are unit vectors), then
E) Consider S={e_1,0}. S is orthogonal but is not linearly independent, because 0∈S.
In fact, every orthogonal set in R^n without zero vectors is linearly independent. Take a orthogonal set
and suppose that there are coefficients a_i such that
. For any i, take the dot product with u_i in both sides of the equation. All product are zero except u_i·u_i=||u_i||. Then
then
.
-1 1/4 as a decimal would be -1.25.
Since -1 is a whole number we would just write that as -1. 1/4 as a decimal is .25.
Answer:
The x intercept would be -2
Step-by-step explanation: