Answer:
The integrals was calculated.
Step-by-step explanation:
We calculate integrals, and we get:
1) ∫ x^4 ln(x) dx=\frac{x^5 · ln(x)}{5} - \frac{x^5}{25}
2) ∫ arcsin(y) dy= y arcsin(y)+\sqrt{1-y²}
3) ∫ e^{-θ} cos(3θ) dθ = \frac{e^{-θ} ( 3sin(3θ)-cos(3θ) )}{10}
4) \int\limits^1_0 {x^3 · \sqrt{4+x^2} } \, dx = \frac{x²(x²+4)^{3/2}}{5} - \frac{8(x²+4)^{3/2}}{15} = \frac{64}{15} - \frac{5^{3/2}}{3}
5) \int\limits^{π/8}_0 {cos^4 (2x) } \, dx =\frac{sin(8x} + 8sin(4x)+24x}{6}=
=\frac{3π+8}{64}
6) ∫ sin^3 (x) dx = \frac{cos^3 (x)}{3} - cos x
7) ∫ sec^4 (x) tan^3 (x) dx = \frac{tan^6(x)}{6} + \frac{tan^4(x)}{4}
8) ∫ tan^5 (x) sec(x) dx = \frac{sec^5 (x)}{5} -\frac{2sec^3 (x)}{3}+ sec x
Range is greater for the 13-14 year olds.
<span>The radius of a sphere join refers to the (D) the center and a point on the sphere. A radius is the distance of the center point to any sides of the circle or sphere. The point on the sphere can be anywhere. The center and a point on the sphere forms a sphere join.</span>
Answer:
f(5) = 26.672 which is option D
Step-by-step explanation:
From question, f(1) = 2 and f'(x)=√(x^3 + 6)
f(5) = f(1) + (5,1)∫ f'(x) dx
Integrating using the boundary 5 and 1;
f(5) = 2 + (5,1)∫√(x^3 + 6) dx
f(5) = 2 + 24.672
So f(5) = 26.672
Answer:
355
Step-by-step explanation: