1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ZanzabumX [31]
3 years ago
12

WILL GIVE BRAINLIEST

Mathematics
1 answer:
frez [133]3 years ago
5 0

Answer:

She will make a profit of one dollar because the cost of operation and production is 203 dollars in total and selling 17 necklaces she will make 204 dollars

Edit: b) She will need to sell exactly seventeen necklaces

Step-by-step explanation: Hope this helps!

You might be interested in
The graph of function g(x) is a transformation of the graph of function f(x) = x2.g(x) =
mariarad [96]

Given:

The graph of function g(x) is a transformation of the graph of function f(x) = x²

As shown: the graph of g(x) is open down

So, we will reflect f(x) over the x-axis, the function will be ⇒ -x²

And there is horizontal compression so, the factor of compression will be > 1

So, the function will be ⇒ -2x²

Finally, there is a vertical shift down 3 units

So,

g(x)=-2x^2-3

6 0
1 year ago
Which equation shows that the Pythagorean identity is true for 0 = 180 degrees? select the equation that is in the form sin^2 0+
elixir [45]

The equation in the form of the given expression is (0)² + (1)² = 1

<h3>Trigonometry identity</h3>

According to some of the trigonometry identity

sin 0 = 0

cos 0 1

Given the expression below

sin^2 0+cos^2 0=1

This can also be expressed as:

(sin0)² + (cos0)² = 1

Substitute

(0)² + (1)² = 1

Hence the equation in the form of the given expression is (0)² + (1)² = 1

Learn more on trig identity here: brainly.com/question/20094605

#SPJ1

8 0
2 years ago
What does x equal? <br> Thanks!
11Alexandr11 [23.1K]

Answer: 33 degrees

Step-by-step explanation:

See paper attached. (:

4 0
3 years ago
Read 2 more answers
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
2 years ago
Solve the following quadratic equation<br> 9m2 +9= 11
jeka94

Answer: m=

1

3

√2 or m=

−1

3

√2

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • the line for the dunking machine was twice as long as the cake walk line the line for the Cakewalk was one third of the length o
    12·1 answer
  • Quick algebra question 15 points and will mark brainliest if correct
    14·1 answer
  • Please explain how you get the answer to this question...
    7·1 answer
  • Solve seven 2/3-1 2/4+3 6/8 choose the numbers to complete complete the next number numbers may be used once or not at all
    15·1 answer
  • Swim flippers are helpful for scuba
    8·1 answer
  • I need help with 4,5,6
    6·1 answer
  • What is the value of x?<br> X+4/9=3/4
    8·2 answers
  • Nestor works at a garden center where he pots plants. It takes him 2 1/2 hours to pot 15 plants.
    10·1 answer
  • it takes 2/5 of cleaning solution to clean 3/4 of the kitchen floor. how much cleaning solution does it take to clean the entire
    12·1 answer
  • A simple random sample of size individuals who are currently employed is asked if they work at home at least once per week. Of t
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!