Ethers can't form hydrogen bonds with water and so have a low solubility
hope that helps
The atoms combine to form compounds to attain stability in nature. The combination of atoms takes place by sharing of electrons between the atoms or complete transfer of electrons from one atom to another. Generally, atoms combine to complete their octet, that is to possess eight electrons in their outer most shell (noble gas configurations) except hydrogen which can attain stability by two electrons in its outer most shell.
Since germanium has 4 electrons in its outer most shell so it needs 4 more electrons to complete its octet and attains the stability. Hydrogen has 1 electron in its outer most shell and it needs only 1 electron to attain stability so, each germanium will combine with 4 hydrogen atoms and thus forming
molecule which is stable in nature.
Hence,
is the formula of the hydride formed by germanium.
Answer:
energy known as the latent heat of vaporization is required to break the hydrogen bonds. At 100 °C, 540 calories per gram of water are needed to convert one gram of liquid water to one gram of water vapour under normal pressure.
Explanation:energy known as the latent heat of vaporization is required to break the hydrogen bonds. At 100 °C, 540 calories per gram of water are needed to convert one gram of liquid water to one gram of water vapour under normal pressure.
Answer:
1·199 J
Explanation:
Given
Mass of water = 0·814 g = 0·814 ×
kg
Increase in temperature = 0·351 °C
Let the amount of heat added be Q J
Formula for heat added is
<h3>Q = m × s × ΔT</h3>
where Q is the amount of heat transferred
m is the mass
s is the heat capacity
ΔT is the change in temperature
Heat capacity of water = 4200 J/kg °C
Applying the formula for heat added
Q = 0·814 ×
× 4200 × 0·351 = 1·199 J
∴ Amount of heat added = 1·199 J