Answer:
To prove that ( sin θ cos θ = cot θ ) is not a trigonometric identity.
Begin with the right hand side:
R.H.S = cot θ =
L.H.S = sin θ cos θ
so, sin θ cos θ ≠ 
So, the equation is not a trigonometric identity.
=========================================================
<u>Anther solution:</u>
To prove that ( sin θ cos θ = cot θ ) is not a trigonometric identity.
Assume θ with a value and substitute with it.
Let θ = 45°
So, L.H.S = sin θ cos θ = sin 45° cos 45° = (1/√2) * (1/√2) = 1/2
R.H.S = cot θ = cot 45 = 1
So, L.H.S ≠ R.H.S
So, sin θ cos θ = cot θ is not a trigonometric identity.
Answer:
y=10
Step-by-step explanation:
Ax=15+bx
ax-bx=15
x(a-b)=15
x=15/(a-b)
4x - 2y - z = - 5 ______×2x - 3y + 2z = 3 _______×13x + y - 2z = - 5 ______×1
8x - 4y - 2z = - 10x - 3y + 2z = 33x + y - 2z = - 5
8x - 4y - 2z = - 10(+) x - 3y + 2z = 3_____________9x - 7y = - 77y = 9x + 7y = 9/7x + 1
x - 3y + 2z = 3(+) 3x + y - 2z = - 5_____________4x - 2y = - 24x - 2(9/7x + 1) = - 24x - 18/7x - 2 = - 210/7x = 0x = 0
y = 9/7(0) + 1y = 1
0 - 3(1) + 2z = 32z = 6z = 3