X = number of tickets sold in advance, and thus cheaper.
x + 206 = number of tickets sold at the door.
now, the ones sold at the door, are more expensive and is more than the early sold tickets, as you know is x + 206.
now, if the early ones cost each one 6 bucks, then the cost for all of them is 6*x, or 6x.
the ones sold at the door are 10 bucks each, and therefore their total cost is 10(x + 206).
now, we know sales in total for both was 6828, therefore,

and surely you'd know what that is.
how many were sold at the door? well, x + 206.
That’s a weird input for a problem, it’s just a bunch of slashes, probably radical
1. Find the equation of the line AB. For reference, the answer is y=(-2/3)x+2.
2. Derive a formula for the area of the shaded rectange. It is A=xy (where x is the length and y is the height).
3. Replace "y" in A=xy with the formula for y: y= (-2/3)x+2:
A=x[(-2/3)x+2] This is a formula for Area A in terms of x only.
4. Since we want to maximize the shaded area, we take the derivative with respect to x of A=x[(-2/3)x+2] , or, equivalently, A=(-2/3)x^2 + 2x.
This results in (dA/dx) = (-4/3)x + 2.
5. Set this result = to 0 and solve for the critical value:
(dA/dx) = (-4/3)x + 2=0, or (4/3)x=2 This results in x=(3/4)(2)=3/2
6. Verify that this critical value x=3/2 does indeed maximize the area function.
7. Determine the area of the shaded rectangle for x=3/2, using the previously-derived formula A=(-2/3)x^2 + 2x.
The result is the max. area of the shaded rectangle.
The answer to your question is n=0 or n=1/10
Collin
22 years = 55,000 USD
+15 years
37 years = 2 x 55,000 = 110,000 USD
+15 years
52 years = 2 x 110,000 = 220,000 USD
Cameron
22 years = 35,000 USD
+10 years
32 years = 2 x 35,000 = 70,000 USD
+10 years
42 years = 2 x 70,000 = 140,000 USD
+10 years
52 years = 2 x 140,000 = 280,000 USD
+10 years
62 years = 2 x 280,000 = 560,000 USD
Retirement Salaries
Collin = 220,000 USD
Cameron = 560,000 USD