Answer:
7.64% probability that they spend less than $160 on back-to-college electronics
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

Probability that they spend less than $160 on back-to-college electronics
This is the pvalue of Z when X = 160. So



has a pvalue of 0.0763
7.64% probability that they spend less than $160 on back-to-college electronics
Don’t do that math anymore soooo sorry
The answer is d.61. 66+7=73. 13+8=21. 52+9=61. 10+10=20
Answer:
0
Step-by-step explanation:
Assuming the problem is:
"lim x-> 4 f(x)=5 lim x-> 4 g(x)=0 and lim x-> 4 h(x)=-2, then find lim x->4 (fg)(x)"
lim x->4 (fg)(x)
Since we know the limits of f and g at x=4 exist we can write the limit as:
lim x->4 f(x) lim x->4 g(x) (since fg(x) means f times g of x.)
5(0)
0